Interaction-enhanced transmission imaging with Rydberg atoms
- URL: http://arxiv.org/abs/2010.12111v2
- Date: Tue, 25 Jan 2022 04:16:13 GMT
- Title: Interaction-enhanced transmission imaging with Rydberg atoms
- Authors: Xiaoguang Huo, J. F. Chen, Jing Qian and Weiping Zhang
- Abstract summary: We present a scheme for achieving a nondestructive and ultrasensitive imaging of Rydberg atoms within an ensemble of cold probe atoms.
This is made possible by the interaction-enhanced electromagnetically induced transparency at off-resonance.
- Score: 6.719624366057524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atomic-scale imaging offers a reliable tool to directly measure the movement
of microscopic particles. We present a scheme for achieving a nondestructive
and ultrasensitive imaging of Rydberg atoms within an ensemble of cold probe
atoms. This is made possible by the interaction-enhanced electromagnetically
induced transparency at off-resonance which enables an extremely narrow
absorption dip for an enhanced transmission. Through the transmission of a
probe beam, we obtain the distribution of Rydberg atoms with both high spatial
resolution and fast response, which ensures a more precise real-time imaging.
Increased resolution compared to the prior interaction-enhanced imaging
technique allows us to accurately locate the atoms by adjusting the probe
detuning only. This new type of interaction-enhanced transmission imaging can
be utilized to other impure systems containing strong many-body interactions,
and is promising to develop super-resolution microscopy of cold atoms.
Related papers
- Cavity-assisted quantum transduction between superconducting qubits and trapped atomic particles mediated by Rydberg levels [49.1574468325115]
We present an approach for transferring quantum states from superconducting qubits to the internal states of trapped atoms or ions.
For experimentally demonstrated parameters of interaction strengths, dissipation, and dephasing, our scheme achieves fidelities above 95%.
arXiv Detail & Related papers (2025-01-06T18:28:18Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - All-optical magnetic imaging with spin defects in van der Waals materials at Angstrom-scale [7.175794024984359]
We propose a novel magnetic imaging protocol that achieves Angstrom-scale resolution.
We combine spin defects in van der Waals materials and terahertz scattering scanning near-field optical microscopy.
Our proposed all-optical magnetic imaging protocol holds significant promise for investigating magnetic textures in condensed matter physics.
arXiv Detail & Related papers (2024-11-14T15:28:51Z) - Spatial super-resolution in nanosensing with blinking emitters [79.16635054977068]
We propose a method of spatial resolution enhancement in metrology with blinking fluorescent nanosensors.
We believe that blinking fluorescent sensing agents being complemented with the developed image analysis technique could be utilized routinely in the life science sector.
arXiv Detail & Related papers (2024-02-27T10:38:05Z) - Continuous wave quantum light control via engineered Rydberg induced
dephasing [17.857341127079305]
We analyze several variations of a single-photon optical switch operating in the continuous wave regime.
The devices are based on ensembles of Rydberg atoms that interact through van der Waals interaction.
arXiv Detail & Related papers (2023-09-19T18:39:24Z) - Atom interferometry with coherent enhancement of Bragg pulse sequences [41.94295877935867]
We demonstrate momentum splitting up to 200 photon recoils in an ultra-cold atom interferometer.
We highlight a new mechanism of destructive interference of the losses leading to a sizeable efficiency enhancement of the beam splitters.
arXiv Detail & Related papers (2023-05-16T15:00:05Z) - Collective radiative dynamics of an ensemble of cold atoms coupled to an
optical waveguide [0.0]
We experimentally and theoretically investigate collective radiative effects in an ensemble of cold atoms coupled to a single-mode optical nanofiber.
Our results highlight the unique opportunities offered by nanophotonic cold atom systems for the experimental investigation of light-matter interaction.
arXiv Detail & Related papers (2021-09-02T12:22:04Z) - Super-resolved imaging of a single cold atom on a nanosecond timescale [38.305954220018315]
We demonstrate nano-scale two-second stroboscopic pictures of a single trapped ion beyond the optical diffraction limit.
Our method provides a powerful tool for probing particle positions, momenta, and correlations, as well as their dynamics in cold atomic systems.
arXiv Detail & Related papers (2021-04-20T15:07:54Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Position-controlled quantum emitters with reproducible emission
wavelength in hexagonal boron nitride [45.39825093917047]
Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization.
Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.
Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.
arXiv Detail & Related papers (2020-11-24T17:20:19Z) - Self-induced transparency in warm and strongly interacting Rydberg gases [1.433758865948252]
We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors.
We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect.
In this regime, self-induced transparency emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction.
arXiv Detail & Related papers (2020-04-28T16:16:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.