論文の概要: Unbiased Estimation Equation under $f$-Separable Bregman Distortion
Measures
- arxiv url: http://arxiv.org/abs/2010.12286v1
- Date: Fri, 23 Oct 2020 10:33:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 00:28:54.891381
- Title: Unbiased Estimation Equation under $f$-Separable Bregman Distortion
Measures
- Title(参考訳): $f$分離ブルグマン歪みの非バイアス推定式
- Authors: Masahiro Kobayashi, Kazuho Watanabe
- Abstract要約: 単調に増大する関数$f$とブレグマン発散を用いた対象関数のクラスにおける非バイアス推定方程式について議論する。
関数 $f$ の選択は、外れ値に対するロバスト性のような望ましい性質を与える。
本研究では, バイアス補正項が消滅したブレグマン発散, 統計モデル, 関数$f$の組み合わせを明らかにする。
- 参考スコア(独自算出の注目度): 0.3553493344868413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss unbiased estimation equations in a class of objective function
using a monotonically increasing function $f$ and Bregman divergence. The
choice of the function $f$ gives desirable properties such as robustness
against outliers. In order to obtain unbiased estimation equations,
analytically intractable integrals are generally required as bias correction
terms. In this study, we clarify the combination of Bregman divergence,
statistical model, and function $f$ in which the bias correction term vanishes.
Focusing on Mahalanobis and Itakura-Saito distances, we provide a
generalization of fundamental existing results and characterize a class of
distributions of positive reals with a scale parameter, which includes the
gamma distribution as a special case. We discuss the possibility of latent bias
minimization when the proportion of outliers is large, which is induced by the
extinction of the bias correction term.
- Abstract(参考訳): 単調に増大する関数$f$とブレグマン発散を用いた対象関数のクラスにおける非バイアス推定方程式について議論する。
関数 $f$ の選択は、外れ値に対する堅牢性のような望ましい性質を与える。
偏りのない推定方程式を得るためには、解析的に難解な積分は一般にバイアス補正項として必要となる。
本研究では,ブレグマンの発散,統計モデル,およびバイアス補正項が消失する関数$f$の組み合わせを明らかにする。
マハラノビスと板倉-斎藤距離に着目して、基本的既存の結果の一般化と、ガンマ分布を特別な場合として含むスケールパラメータによる正実数の分布のクラスを特徴づける。
本稿では, バイアス補正項の消滅によって引き起こされる外れ値の割合が大きい場合, 潜伏バイアス最小化の可能性について論じる。
関連論文リスト
- Unbiased Estimating Equation on Inverse Divergence and Its Conditions [0.10742675209112622]
本稿では、逆発散(英語版)と呼ばれる相互関数によって定義されるブレグマン発散(英語版)に焦点を当てる。
単調に増大する関数 $f$ と逆発散によって定義される損失関数に対して、推定方程式が偏りのない統計モデルと関数 $f$ の条件を明確にする。
論文 参考訳(メタデータ) (2024-04-25T11:22:48Z) - Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
統計的観点から「データセットバイアス」問題を考察する。
問題の主な原因は、クラス属性 u と非クラス属性 b の強い相関関係である。
本稿では,各試料nの目的をフラクタル1p(u_n|b_n)で重み付けするか,その試料をフラクタル1p(u_n|b_n)に比例してサンプリングすることにより,データセットバイアスを軽減することを提案する。
論文 参考訳(メタデータ) (2024-02-05T22:58:06Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
プライベート平均推定に対する古典的なアプローチは、真の平均を計算し、バイアスのないがおそらく相関のあるガウスノイズを加えることである。
すべての入力データセットに対して、集中的な差分プライバシーを満たす非バイアス平均推定器が、少なくとも多くのエラーをもたらすことを示す。
論文 参考訳(メタデータ) (2023-01-31T18:47:42Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
本稿では, 2次応答に対する一般化線形モデルである,$p$一般化プロビット回帰モデルについて検討する。
p$の一般化されたプロビット回帰に対する最大可能性推定器は、大容量データ上で$(1+varepsilon)$の係数まで効率的に近似できることを示す。
論文 参考訳(メタデータ) (2022-03-25T10:54:41Z) - Understanding the bias-variance tradeoff of Bregman divergences [13.006468721874372]
本稿では,任意のブレグマン発散損失関数に対するバイアス分散トレードオフを一般化したPfau (2013) の業績に基づく。
ラベルと同様、中心予測は確率変数の平均と解釈でき、損失関数自身で定義される双対空間で平均が動作することを示す。
論文 参考訳(メタデータ) (2022-02-08T22:06:16Z) - Robust Linear Regression for General Feature Distribution [21.0709900887309]
本研究では, 不正な相手によってデータが汚染されるような頑健な線形回帰について検討する。
必ずしもその機能が中心であるとは限らない。
特徴が中心ならば、標準収束率を得ることができる。
論文 参考訳(メタデータ) (2022-02-04T11:22:13Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z) - Estimation of Accurate and Calibrated Uncertainties in Deterministic
models [0.8702432681310401]
我々は,決定論的予測を確率論的予測に変換する手法を考案した。
そのためには,そのようなモデルの精度と信頼性(校正)を損なう必要がある。
隠れたノイズを正確に回収できる合成データと、大規模な実世界のデータセットの両方について、いくつかの例を示す。
論文 参考訳(メタデータ) (2020-03-11T04:02:56Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
本稿では,分離可能なデータの強化に関する高精度な高次元理論を確立する。
統計モデルのクラスでは、ブースティングの普遍性誤差を正確に解析する。
また, 推力試験誤差と最適ベイズ誤差の関係を明示的に説明する。
論文 参考訳(メタデータ) (2020-02-05T00:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。