Learning Multi-layer Graphs and a Common Representation for Clustering
- URL: http://arxiv.org/abs/2010.12301v2
- Date: Wed, 3 Mar 2021 17:22:11 GMT
- Title: Learning Multi-layer Graphs and a Common Representation for Clustering
- Authors: Sravanthi Gurugubelli and Sundeep Prabhakar Chepuri
- Abstract summary: We focus on graph learning from multi-view data of shared entities for spectral clustering.
We propose an efficient solver based on alternating minimization to solve the problem.
Numerical experiments on synthetic and real datasets demonstrate that the proposed algorithm outperforms state-of-the-art multi-view clustering techniques.
- Score: 13.90938823562779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we focus on graph learning from multi-view data of shared
entities for spectral clustering. We can explain interactions between the
entities in multi-view data using a multi-layer graph with a common vertex set,
which represents the shared entities. The edges of different layers capture the
relationships of the entities. Assuming a smoothness data model, we jointly
estimate the graph Laplacian matrices of the individual graph layers and
low-dimensional embedding of the common vertex set. We constrain the rank of
the graph Laplacian matrices to obtain multi-component graph layers for
clustering. The low-dimensional node embeddings, common to all the views,
assimilate the complementary information present in the views. We propose an
efficient solver based on alternating minimization to solve the proposed
multi-layer multi-component graph learning problem. Numerical experiments on
synthetic and real datasets demonstrate that the proposed algorithm outperforms
state-of-the-art multi-view clustering techniques.
Related papers
- Hierarchical Aggregations for High-Dimensional Multiplex Graph Embedding [7.271256448682229]
HMGE is a novel embedding method based on hierarchical aggregation for high-dimensional multiplex graphs.
We leverage mutual information between local patches and global summaries to train the model without supervision.
Detailed experiments on synthetic and real-world data illustrate the suitability of our approach to downstream supervised tasks.
arXiv Detail & Related papers (2023-12-28T05:39:33Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
We propose a fine-grained graph learning framework for multi-view subspace clustering (FGL-MSC)
The main challenge is how to optimize the fine-grained fusion weights while generating the learned graph that fits the clustering task.
Experiments on eight real-world datasets show that the proposed framework has comparable performance to the state-of-the-art methods.
arXiv Detail & Related papers (2022-01-12T18:00:29Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
We propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization.
Specifically, we construct a hidden and tractable large graph by anchor graph for each view.
We develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model.
arXiv Detail & Related papers (2021-06-29T13:10:56Z) - Consistent Multiple Graph Embedding for Multi-View Clustering [41.17336912278538]
We propose a novel Consistent Multiple Graph Embedding Clustering framework(CMGEC)
Specifically, a multiple graph auto-encoder is designed to flexibly encode the complementary information of multi-view data.
To guide the learned common representation maintaining the similarity of the neighboring characteristics in each view, a Multi-view Mutual Information Maximization module(MMIM) is introduced.
arXiv Detail & Related papers (2021-05-11T09:08:22Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views.
We propose a new multi-view graph learning framework, which for the first time simultaneously models multi-view consistency and multi-view inconsistency in a unified objective function.
Experiments on twelve multi-view datasets have demonstrated the robustness and efficiency of the proposed approach.
arXiv Detail & Related papers (2020-08-24T06:11:29Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.