A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19
- URL: http://arxiv.org/abs/2007.10929v2
- Date: Thu, 17 Sep 2020 08:26:13 GMT
- Title: A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19
- Authors: Zhijian Li, Yunling Zheng, Jack Xin, and Guofa Zhou
- Abstract summary: We develop an integrated disease model based on epidemic differential equations (SIR) and recurrent neural networks (RNN)
We trained and tested our model on CO-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting.
- Score: 3.464871689508835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world
significantly. Modeling the trend of infection and real-time forecasting of
cases can help decision making and control of the disease spread. However,
data-driven methods such as recurrent neural networks (RNN) can perform poorly
due to limited daily samples in time. In this work, we develop an integrated
spatiotemporal model based on the epidemic differential equations (SIR) and
RNN. The former after simplification and discretization is a compact model of
temporal infection trend of a region while the latter models the effect of
nearest neighboring regions. The latter captures latent spatial information.
%that is not publicly reported. We trained and tested our model on COVID-19
data in Italy, and show that it out-performs existing temporal models (fully
connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting
especially in the regime of limited training data.
Related papers
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - An integrated recurrent neural network and regression model with spatial
and climatic couplings for vector-borne disease dynamics [4.254099382808598]
We develop an integrated recurrent neural network and nonlinear regression model for disease-borne disease evolution.
We take into account climate data seasonality and as external factors that correlate with insects (e.g. flies), also spill-over infections from neighboring regions surrounding a region of interest.
The integrated model is trained by neuraltemporal descent and tested on leish-maniasis data in Sri Lanka from 2013-2018 where infection outbreaks occurred.
arXiv Detail & Related papers (2022-01-23T23:04:58Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
We present COVID-LSTM, a data-driven model based on a Long Short-term memory architecture for forecasting COVID-19 incidence at the county-level in the US.
We use the weekly number of new cases as temporal input, and hand-engineered spatial features from Facebook to capture the spread of the disease in time and space.
Over the 4-week forecast horizon, our model is on average 50 cases per county more accurate than the COVIDhub-ensemble.
arXiv Detail & Related papers (2021-09-24T17:40:08Z) - Modeling the geospatial evolution of COVID-19 using spatio-temporal
convolutional sequence-to-sequence neural networks [48.7576911714538]
Portugal was the country in the world with the largest incidence rate, with 14-days incidence rates per 100,000 inhabitants in excess of 1000.
Despite its importance, accurate prediction of the geospatial evolution of COVID-19 remains a challenge.
arXiv Detail & Related papers (2021-05-06T15:24:00Z) - Digital twins based on bidirectional LSTM and GAN for modelling COVID-19 [8.406968279478347]
coronavirus 2019 has spread throughout the globe infecting over 100 million people and causing the death of over 2.2 million people.
There is an urgent need to study the dynamics of epidemiological models to gain a better understanding of how such diseases spread.
Recent advances in machine learning techniques have given rise to neural networks with the ability to learn and predict complex dynamics at reduced computational costs.
arXiv Detail & Related papers (2021-02-03T11:54:24Z) - Deep learning via LSTM models for COVID-19 infection forecasting in
India [13.163271874039191]
Prominent computational and mathematical models have been unreliable due to the complexity of the spread of infections.
Deep learning models such as recurrent neural networks are well suited for modelling temporal sequences.
We select states with COVID-19 hotpots in terms of the rate of infections and compare with states where infections have been contained or reached their peak.
Our results show that long-term forecasts are promising which motivates the application of the method in other countries or areas.
arXiv Detail & Related papers (2021-01-28T09:19:10Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - A Spatial-Temporal Graph Based Hybrid Infectious Disease Model with
Application to COVID-19 [3.785123406103385]
As the COVID-19 pandemic evolves, reliable prediction plays an important role for policy making.
The data-driven machine learning models such as RNN can suffer in case of limited time series data such as COVID-19.
We combine SEIR and RNN on a graph structure to develop a hybrid-temporal model to achieve both accuracy and efficiency in training and forecasting.
arXiv Detail & Related papers (2020-10-18T19:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.