Temporal Deep Learning Architecture for Prediction of COVID-19 Cases in
India
- URL: http://arxiv.org/abs/2108.13823v1
- Date: Tue, 31 Aug 2021 13:28:51 GMT
- Title: Temporal Deep Learning Architecture for Prediction of COVID-19 Cases in
India
- Authors: Hanuman Verma, Saurav Mandal, Akshansh Gupta
- Abstract summary: Recently the new machine learning approaches are being used to understand the dynamic trend of COVID-19 spread.
We designed the recurrent and convolutional neural network models: vanilla LSTM, stacked LSTM, ED-LSTM, Bi-LSTM, CNN, and hybrid CNN+LSTM model.
The results show that the stacked LSTM and hybrid CNN+LSTM models perform best relative to other models.
- Score: 1.7969777786551424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To combat the recent coronavirus disease 2019 (COVID-19), academician and
clinician are in search of new approaches to predict the COVID-19 outbreak
dynamic trends that may slow down or stop the pandemic. Epidemiological models
like Susceptible-Infected-Recovered (SIR) and its variants are helpful to
understand the dynamics trend of pandemic that may be used in decision making
to optimize possible controls from the infectious disease. But these
epidemiological models based on mathematical assumptions may not predict the
real pandemic situation. Recently the new machine learning approaches are being
used to understand the dynamic trend of COVID-19 spread. In this paper, we
designed the recurrent and convolutional neural network models: vanilla LSTM,
stacked LSTM, ED-LSTM, Bi-LSTM, CNN, and hybrid CNN+LSTM model to capture the
complex trend of COVID-19 outbreak and perform the forecasting of COVID-19
daily confirmed cases of 7, 14, 21 days for India and its four most affected
states (Maharashtra, Kerala, Karnataka, and Tamil Nadu). The root mean square
error (RMSE) and mean absolute percentage error (MAPE) evaluation metric are
computed on the testing data to demonstrate the relative performance of these
models. The results show that the stacked LSTM and hybrid CNN+LSTM models
perform best relative to other models.
Related papers
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Modelling COVID-19 Pandemic Dynamics Using Transparent, Interpretable,
Parsimonious and Simulatable (TIPS) Machine Learning Models: A Case Study
from Systems Thinking and System Identification Perspectives [1.4061680807550718]
The present study proposes using systems engineering and system identification approach to build transparent, interpretable, parsimonious and simulatable (TIPS) dynamic machine learning models.
TIPS models are developed based on the well-known NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model, which can help better understand the COVID-19 pandemic dynamics.
arXiv Detail & Related papers (2021-11-01T08:42:37Z) - Modeling the geospatial evolution of COVID-19 using spatio-temporal
convolutional sequence-to-sequence neural networks [48.7576911714538]
Portugal was the country in the world with the largest incidence rate, with 14-days incidence rates per 100,000 inhabitants in excess of 1000.
Despite its importance, accurate prediction of the geospatial evolution of COVID-19 remains a challenge.
arXiv Detail & Related papers (2021-05-06T15:24:00Z) - Digital twins based on bidirectional LSTM and GAN for modelling COVID-19 [8.406968279478347]
coronavirus 2019 has spread throughout the globe infecting over 100 million people and causing the death of over 2.2 million people.
There is an urgent need to study the dynamics of epidemiological models to gain a better understanding of how such diseases spread.
Recent advances in machine learning techniques have given rise to neural networks with the ability to learn and predict complex dynamics at reduced computational costs.
arXiv Detail & Related papers (2021-02-03T11:54:24Z) - Deep learning via LSTM models for COVID-19 infection forecasting in
India [13.163271874039191]
Prominent computational and mathematical models have been unreliable due to the complexity of the spread of infections.
Deep learning models such as recurrent neural networks are well suited for modelling temporal sequences.
We select states with COVID-19 hotpots in terms of the rate of infections and compare with states where infections have been contained or reached their peak.
Our results show that long-term forecasts are promising which motivates the application of the method in other countries or areas.
arXiv Detail & Related papers (2021-01-28T09:19:10Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Deep Learning Models for Early Detection and Prediction of the spread of
Novel Coronavirus (COVID-19) [4.213555705835109]
SARS-CoV2 is continuing to spread globally and has become a pandemic.
There is an urgent need to develop machine learning techniques to predict the spread of COVID-19.
arXiv Detail & Related papers (2020-07-29T10:14:11Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19 [3.464871689508835]
We develop an integrated disease model based on epidemic differential equations (SIR) and recurrent neural networks (RNN)
We trained and tested our model on CO-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting.
arXiv Detail & Related papers (2020-07-14T07:04:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.