Multiscale Score Matching for Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2010.13132v3
- Date: Tue, 23 Mar 2021 14:52:50 GMT
- Title: Multiscale Score Matching for Out-of-Distribution Detection
- Authors: Ahsan Mahmood, Junier Oliva, Martin Styner
- Abstract summary: We present a new methodology for detecting out-of-distribution (OOD) images by utilizing norms of the score estimates at multiple noise scales.
Our methodology is completely unsupervised and follows a straight forward training scheme.
- Score: 19.61640396236456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new methodology for detecting out-of-distribution (OOD) images
by utilizing norms of the score estimates at multiple noise scales. A score is
defined to be the gradient of the log density with respect to the input data.
Our methodology is completely unsupervised and follows a straight forward
training scheme. First, we train a deep network to estimate scores for levels
of noise. Once trained, we calculate the noisy score estimates for N
in-distribution samples and take the L2-norms across the input dimensions
(resulting in an NxL matrix). Then we train an auxiliary model (such as a
Gaussian Mixture Model) to learn the in-distribution spatial regions in this
L-dimensional space. This auxiliary model can now be used to identify points
that reside outside the learned space. Despite its simplicity, our experiments
show that this methodology significantly outperforms the state-of-the-art in
detecting out-of-distribution images. For example, our method can effectively
separate CIFAR-10 (inlier) and SVHN (OOD) images, a setting which has been
previously shown to be difficult for deep likelihood models.
Related papers
- Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection [28.442470704073767]
This paper proposes a novel hierarchical visual category modeling scheme to separate out-of-distribution data from in-distribution data.
We conduct experiments on seven popular benchmarks, including CIFAR, iNaturalist, SUN, Places, Textures, ImageNet-O, and OpenImage-O.
Our visual representation has a competitive performance when compared with features learned by classical methods.
arXiv Detail & Related papers (2024-08-28T07:05:46Z) - An accurate detection is not all you need to combat label noise in web-noisy datasets [23.020126612431746]
We show that direct estimation of the separating hyperplane can indeed offer an accurate detection of OOD samples.
We propose a hybrid solution that alternates between noise detection using linear separation and a state-of-the-art (SOTA) small-loss approach.
arXiv Detail & Related papers (2024-07-08T00:21:42Z) - Direct Unsupervised Denoising [60.71146161035649]
Unsupervised denoisers do not directly produce a single prediction, such as the MMSE estimate.
We present an alternative approach that trains a deterministic network alongside the VAE to directly predict a central tendency.
arXiv Detail & Related papers (2023-10-27T13:02:12Z) - PNI : Industrial Anomaly Detection using Position and Neighborhood
Information [6.316693022958221]
We propose a new algorithm, textbfPNI, which estimates the normal distribution using conditional probability given neighborhood features.
We conducted experiments on the MVTec AD benchmark dataset and achieved state-of-the-art performance, with textbf99.56% and textbf98.98% AUROC scores in anomaly detection and localization.
arXiv Detail & Related papers (2022-11-22T23:45:27Z) - Denoising diffusion models for out-of-distribution detection [2.113925122479677]
We exploit the view of denoising probabilistic diffusion models (DDPM) as denoising autoencoders.
We use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs.
arXiv Detail & Related papers (2022-11-14T20:35:11Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
We propose a novel "Decoupled-Mixup" method to train CNN models for visual recognition.
Our method decouples each image into discriminative and noise-prone regions, and then heterogeneously combines these regions to train CNN models.
Experiment results show the high generalization performance of our method on testing data that are composed of unseen contexts.
arXiv Detail & Related papers (2022-10-26T15:21:39Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
We introduce a way to sample data from a conditional distribution given the measurements, such that the model can be readily used for solving inverse problems in imaging.
Our model requires magnitude images only for training, and yet is able to reconstruct complex-valued data, and even extends to parallel imaging.
arXiv Detail & Related papers (2021-10-08T08:42:03Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
We propose two strategies for freeing a neural network from tuning with OoD data, while improving its OoD detection performance.
We specifically propose to decompose confidence scoring as well as a modified input pre-processing method.
Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference.
arXiv Detail & Related papers (2020-02-26T04:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.