論文の概要: Machine Learning Based Network Coverage Guidance System
- arxiv url: http://arxiv.org/abs/2010.13190v1
- Date: Sun, 25 Oct 2020 19:01:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 05:19:09.364893
- Title: Machine Learning Based Network Coverage Guidance System
- Title(参考訳): 機械学習に基づくネットワーク被覆誘導システム
- Authors: Srikanth Chandar, Muvazima Mansoor, Mohina Ahmadi, Hrishikesh Badve,
Deepesh Sahoo, Bharath Katragadda
- Abstract要約: 4Gの出現に伴い、データ消費が大幅に増加し、モバイルネットワークの可用性が最重要になっている。
本稿では,ネットワーク接続が不十分な地域を特定するための新しいアプローチを提案する。
このソリューションにより、より強力な信号強度ロケーションを備えた、より優れたモバイルネットワークカバレッジエリアへのナビゲートが可能になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of 4G, there has been a huge consumption of data and the
availability of mobile networks has become paramount. Also, with the burst of
network traffic based on user consumption, data availability and network
anomalies have increased substantially. In this paper, we introduce a novel
approach, to identify the regions that have poor network connectivity thereby
providing feedback to both the service providers to improve the coverage as
well as to the customers to choose the network judiciously. In addition to
this, the solution enables customers to navigate to a better mobile network
coverage area with stronger signal strength location using Machine Learning
Clustering Algorithms, whilst deploying it as a Mobile Application. It also
provides a dynamic visual representation of varying network strength and range
across nearby geographical areas.
- Abstract(参考訳): 4Gの出現に伴い、データ消費が大幅に増加し、モバイルネットワークの可用性が最重要になっている。
また、ユーザ消費に基づくネットワークトラフィックの爆発により、データ可用性とネットワーク異常が大幅に増加した。
本稿では,ネットワーク接続が貧弱な地域を識別する新たなアプローチを提案する。これにより,両サービス提供者に対して,カバー範囲の改善と,ユーザに対して,ネットワークを司法的に選択するためのフィードバックを提供する。
これに加えて、このソリューションにより、顧客は、モバイルアプリケーションとしてデプロイしながら、機械学習クラスタリングアルゴリズムを使用して、より強力な信号強度ロケーションを持つ、より優れたモバイルネットワークカバレッジエリアにナビゲートできる。
また、周囲の地理的領域にまたがる様々なネットワーク強度と範囲の動的視覚表現も提供する。
関連論文リスト
- Towards Intelligent Network Management: Leveraging AI for Network
Service Detection [0.0]
本研究では,高度なネットワークトラフィック分類システムを構築するために機械学習手法を活用することに焦点を当てた。
我々は,様々なネットワークサービスタイプをリアルタイムに識別する,新しいデータ駆動型アプローチを提案する。
本システムは,ネットワークサービスを識別する際,顕著な精度を示す。
論文 参考訳(メタデータ) (2023-10-14T16:06:11Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - Neighbor Auto-Grouping Graph Neural Networks for Handover Parameter
Configuration in Cellular Network [47.29123145759976]
ハンドオーバパラメータ設定のための学習ベースのフレームワークを提案する。
まず、ネットワークが異なるネットワーク状態とパラメータ値にどのように反応するかを模倣する新しいアプローチを提案する。
パラメータ設定の段階では、グローバルな最適化問題を解決する代わりに、局所的な多目的最適化戦略を設計する。
論文 参考訳(メタデータ) (2022-12-29T18:51:36Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - A Survey on Reinforcement Learning-Aided Caching in Mobile Edge Networks [12.470038211838363]
モバイルネットワークは、データ量とユーザ密度が大幅に増加している。
この問題を軽減する効率的な手法は、エッジネットワークノードのキャッシュを利用してデータをユーザに近づけることである。
機械学習とワイヤレスネットワークの融合は、ネットワーク最適化に有効な手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T10:30:56Z) - Multi-Agent Reinforcement Learning for Adaptive User Association in
Dynamic mmWave Networks [17.295158818748188]
マルチエージェント強化学習に基づくユーザアソシエーションのためのスケーラブルで柔軟なアルゴリズムを提案する。
ユーザーは、ローカルな観察のみに基づいて、ネットワークの総和率を最適化するために、自律的に行動を調整することを学習する独立したエージェントとして振る舞う。
シミュレーションの結果,提案アルゴリズムは無線環境の変化に適応できることを示す。
論文 参考訳(メタデータ) (2020-06-16T10:51:27Z) - Proximity-based Networking: Small world overlays optimized with particle
swarm optimization [0.0]
小規模世界のネットワークは、インターネットネットワーク内の情報の拡散とルックアップにおいて、信じられないほど有用である。
本稿では,各ノードの分割鍵空間内のピアの配置に,コード内の地理的位置を組み込んだネットワーク方式を提案する。
提案手法の柔軟性により,様々なSwarmモデルとエージェントが利用可能となる。
論文 参考訳(メタデータ) (2020-06-03T01:40:46Z) - Distributed Learning in Ad-Hoc Networks: A Multi-player Multi-armed
Bandit Framework [0.0]
次世代ネットワークは超高密度で、ピークレートは非常に高いが、ユーザ当たりのトラフィックは比較的低いと期待されている。
この問題を解決するために、他のネットワークとスペクトルを共有する認知アドホックネットワーク(CAHN)が構想されている。
本稿では,最先端のマルチアーム・マルチプレイヤー・バンディットに基づく分散学習アルゴリズムについて論じる。
論文 参考訳(メタデータ) (2020-03-06T18:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。