Deep Sequential Learning for Cervical Spine Fracture Detection on
Computed Tomography Imaging
- URL: http://arxiv.org/abs/2010.13336v4
- Date: Fri, 5 Feb 2021 17:33:06 GMT
- Title: Deep Sequential Learning for Cervical Spine Fracture Detection on
Computed Tomography Imaging
- Authors: Hojjat Salehinejad, Edward Ho, Hui-Ming Lin, Priscila Crivellaro,
Oleksandra Samorodova, Monica Tafur Arciniegas, Zamir Merali, Suradech
Suthiphosuwan, Aditya Bharatha, Kristen Yeom, Muhammad Mamdani, Jefferson
Wilson, Errol Colak
- Abstract summary: We propose a deep convolutional neural network (DCNN) with a bidirectional long-short term memory (BLSTM) layer for the automated detection of cervical spine fractures in CT axial images.
We used an annotated dataset of 3,666 CT scans (729 positive and 2,937 negative cases) to train and validate the model.
The validation results show a classification accuracy of 70.92% and 79.18% on the balanced (104 positive and 104 negative cases) and imbalanced (104 positive and 419 negative cases) test datasets, respectively.
- Score: 20.051649556262216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fractures of the cervical spine are a medical emergency and may lead to
permanent paralysis and even death. Accurate diagnosis in patients with
suspected fractures by computed tomography (CT) is critical to patient
management. In this paper, we propose a deep convolutional neural network
(DCNN) with a bidirectional long-short term memory (BLSTM) layer for the
automated detection of cervical spine fractures in CT axial images. We used an
annotated dataset of 3,666 CT scans (729 positive and 2,937 negative cases) to
train and validate the model. The validation results show a classification
accuracy of 70.92% and 79.18% on the balanced (104 positive and 104 negative
cases) and imbalanced (104 positive and 419 negative cases) test datasets,
respectively.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Development of a Deep Learning Method to Identify Acute Ischemic Stroke
Lesions on Brain CT [38.06921198677509]
Deep learning techniques can provide automated CT brain scan assessment, but usually require annotated images.
We designed a convolutional neural network-based DL algorithm using routinely-collected CT brain scans from the Third International Stroke Trial (IST-3)
Our best-performing DL method achieved 72% accuracy for lesion presence and side.
arXiv Detail & Related papers (2023-09-29T15:28:16Z) - Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient
Network [37.931408083443074]
Pixel-Lesion-pAtient Network (PLAN) is proposed to jointly segment and classify each lesion with improved anchor queries and a foreground-enhanced sampling loss.
PLAN achieves 95% and 96% in patient-level sensitivity and specificity.
On contrast-enhanced CT, our lesion-level detection precision, recall, and classification accuracy are 92%, 89%, and 86%, outperforming widely used CNN and transformers for lesion segmentation.
arXiv Detail & Related papers (2023-07-17T06:21:45Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - Cervical Optical Coherence Tomography Image Classification Based on
Contrastive Self-Supervised Texture Learning [2.674926127069043]
This study aims to develop a computer-aided diagnosis (CADx) approach to classifying in-vivo cervical OCT images based on self-supervised learning.
Besides high-level semantic features extracted by a convolutional neural network (CNN), the proposed CADx approach leverages unlabeled cervical OCT images' texture features learned by contrastive texture learning.
arXiv Detail & Related papers (2021-08-11T07:52:59Z) - Critical Evaluation of Deep Neural Networks for Wrist Fracture Detection [1.0617212070722408]
Wrist Fracture is the most common type of fracture with a high incidence rate.
Recent advances in the field of Deep Learning (DL) have shown that wrist fracture detection can be automated using Convolutional Neural Networks.
Our results reveal that a typical state-of-the-art approach, such as DeepWrist, has a substantially lower performance on the challenging test set.
arXiv Detail & Related papers (2020-12-04T13:35:36Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z) - Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using
Quantitative Features from Chest CT Images [54.919022945740515]
The aim of this study is to realize automatic severity assessment (non-severe or severe) of COVID-19 based on chest CT images.
A random forest (RF) model is trained to assess the severity (non-severe or severe) based on quantitative features.
Several quantitative features, which have the potential to reflect the severity of COVID-19, were revealed.
arXiv Detail & Related papers (2020-03-26T15:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.