Benchmarking the Variational Quantum Eigensolver through Simulation of
the Ground State Energy of Prebiotic Molecules on High-Performance Computers
- URL: http://arxiv.org/abs/2010.13578v2
- Date: Tue, 5 Jan 2021 11:37:55 GMT
- Title: Benchmarking the Variational Quantum Eigensolver through Simulation of
the Ground State Energy of Prebiotic Molecules on High-Performance Computers
- Authors: P. Lolur, M. Rahm, M. Skogh, L. Garc\'ia-\'Alvarez, and G. Wendin
- Abstract summary: We use the Variational Quantum Eigensolver (VQE) as implemented in the Qiskit software package to compute the ground state energy of small molecules.
The work aims to benchmark algorithms for calculating the electronic structure and energy surfaces of molecules of relevance to prebiotic chemistry.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use the Variational Quantum Eigensolver (VQE) as implemented in the Qiskit
software package to compute the ground state energy of small molecules derived
from water, H$_2$O, and hydrogen cyanide, HCN. The work aims to benchmark
algorithms for calculating the electronic structure and energy surfaces of
molecules of relevance to prebiotic chemistry, beginning with water and
hydrogen cyanide, and to run them on the available simulated and physical
quantum hardware. The numerical calculations of the algorithms for small
quantum processors allow us to design more efficient protocols to be run in
real hardware, as well as to analyze their performance. Future implementations
on accessible quantum processing prototypes will benchmark quantum computers
and provide tests of quantum advantage with heuristic quantum algorithms.
Related papers
- Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.
Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Use VQE to calculate the ground energy of hydrogen molecules on IBM
Quantum [2.3889084213601346]
We implement the Variational Quantum Eigensolver (VQE) algorithm using Qiskit on the IBM Quantum platform to calculate the ground state energy of a hydrogen molecule.
Our fi ndings demonstrate that VQE can effi ciently calculate molecular properties with high accuracy.
arXiv Detail & Related papers (2023-05-11T02:53:26Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - An Interface for Variational Quantum Eigensolver based Energy (VQE-E)
and Force (VQE-F) Calculator to Atomic Simulation Environment (ASE) [0.0]
Variational Quantum Eigensolver based molecular Energy (VQE-E) and molecular Force (VQE-F)
We have created an interface for the Variational Quantum Eigensolver based molecular Energy (VQE-E) and molecular Force (VQE-F) code to the Atomic Simulation Environment (ASE)
arXiv Detail & Related papers (2022-09-28T07:19:08Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - The Cost of Improving the Precision of the Variational Quantum
Eigensolver for Quantum Chemistry [0.0]
We study how various types of errors affect the variational quantum eigensolver (VQE)
We find that the optimal way of running the hybrid classical-quantum optimization is to allow some noise in intermediate energy evaluations.
arXiv Detail & Related papers (2021-11-09T06:24:52Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum computation of silicon electronic band structure [0.0]
We show that unprecedented methods used in quantum chemistry, designed to simulate molecules on quantum processors, can be extended to calculate properties of periodic solids.
In particular, we present minimal depth circuits implementing the variational quantum eigensolver algorithm and successfully use it to compute the band structure of silicon on a quantum machine for the first time.
arXiv Detail & Related papers (2020-06-06T07:45:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.