論文の概要: Radiogenomics of Glioblastoma: Identification of Radiomics associated
with Molecular Subtypes
- arxiv url: http://arxiv.org/abs/2010.14068v1
- Date: Tue, 27 Oct 2020 05:31:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 11:39:57.062361
- Title: Radiogenomics of Glioblastoma: Identification of Radiomics associated
with Molecular Subtypes
- Title(参考訳): グリオ芽腫のラジオゲノミクス : 分子サブタイプに関連する放射線の同定
- Authors: Navodini Wijethilake, Mobarakol Islam, Dulani Meedeniya, Charith
Chitraranjan, Indika Perera, Hongliang Ren
- Abstract要約: グリオ芽腫は中枢神経系腫瘍の最も悪性なタイプである。
GBMのサブタイプは、放射能を利用して平均79%の精度で予測され、90%以上は遺伝子発現プロファイルを利用して予測される。
- 参考スコア(独自算出の注目度): 13.21715837712657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glioblastoma is the most malignant type of central nervous system tumor with
GBM subtypes cleaved based on molecular level gene alterations. These
alterations are also happened to affect the histology. Thus, it can cause
visible changes in images, such as enhancement and edema development. In this
study, we extract intensity, volume, and texture features from the tumor
subregions to identify the correlations with gene expression features and
overall survival. Consequently, we utilize the radiomics to find associations
with the subtypes of glioblastoma. Accordingly, the fractal dimensions of the
whole tumor, tumor core, and necrosis regions show a significant difference
between the Proneural, Classical and Mesenchymal subtypes. Additionally, the
subtypes of GBM are predicted with an average accuracy of 79% utilizing
radiomics and accuracy over 90% utilizing gene expression profiles.
- Abstract(参考訳): グリオ芽腫は悪性中枢神経系腫瘍の中で最も悪性であり、GBMサブタイプは分子レベル遺伝子変異に基づく。
これらの変化は、組織学にも影響を及ぼす。
したがって、拡張や浮腫の発生など、画像の可視的な変化を引き起こす可能性がある。
本研究では,腫瘍部分領域の強度,容積,テクスチャの特徴を抽出し,遺伝子発現の特徴と生存率との相関を同定する。
以上より,glioblastomaの亜型との関連性について検討した。
その結果, 腫瘍, 腫瘍コア, 壊死領域のフラクタル次元は, 神経, 古典, 間葉系サブタイプ間に有意差が認められた。
さらに、gbmのサブタイプを平均79%の放射線利用率で予測し、90%以上を遺伝子発現プロファイルを利用した精度で予測する。
関連論文リスト
- Towards Generalizable Tumor Synthesis [48.45704270448412]
腫瘍合成は、医用画像における人工腫瘍の作成を可能にし、腫瘍の検出とセグメンテーションのためのAIモデルのトレーニングを容易にする。
本論文は, 臨界観察を生かして, 一般化可能な腫瘍合成に向けて進歩的な一歩を踏み出した。
私たちは、Diffusion Modelsのような生成AIモデルが、単一の臓器から限られた数の腫瘍例を訓練しても、様々な臓器に一般化された現実的な腫瘍を作成できることを確認した。
論文 参考訳(メタデータ) (2024-02-29T18:57:39Z) - Quantifying intra-tumoral genetic heterogeneity of glioblastoma toward
precision medicine using MRI and a data-inclusive machine learning algorithm [3.2507684591996036]
Glioblastoma (GBM) は最も攻撃的で致命的なヒト癌の一つである。
バイオプシーは侵襲的であり、非侵襲的なMRIベースの機械学習(ML)モデルの開発を動機付けている。
我々は,MRIを用いて各GBM腫瘍の局所的遺伝的変化を予測するための新しいWeakly Supervised Ordinal Support Vector Machine (WSO-SVM)を提案する。
論文 参考訳(メタデータ) (2023-12-30T03:28:51Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Novel Local Radiomic Bayesian Classifiers for Non-Invasive Prediction of
MGMT Methylation Status in Glioblastoma [0.0]
グリオーマ腫瘍組織におけるO6-メチルグアニン-DNA-メチルトランスフェラーゼ(MGMT)遺伝子の発現は臨床的に重要である。
現在、MGMTメチル化は、侵襲的な脳生検およびその後に抽出された腫瘍組織の遺伝子解析によって決定されている。
FLAIR系列磁気共鳴画像(MRI)から抽出した放射能特性に基づいてMGMTメチル化状態の確率論的予測を行う新しいベイズ分類器を提案する。
論文 参考訳(メタデータ) (2021-11-30T04:53:23Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
本稿では,MRI画像を用いて脳腫瘍領域の分類と分類を行うマルチタスク注意誘導エンコーダネットワーク(MAG-Net)を提案する。
このモデルは既存の最先端モデルと比較して有望な結果を得た。
論文 参考訳(メタデータ) (2021-07-26T16:51:00Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Radiomic Deformation and Textural Heterogeneity (R-DepTH) Descriptor to
characterize Tumor Field Effect: Application to Survival Prediction in
Glioblastoma [2.1916334019121537]
腫瘍野効果の概念は、がんが可視性腫瘍を超える影響を持つ全身疾患であることを意味する。
r-DepTH (r-DepTH) を用いたMRI ベースの記述器, 放射能とテクスチュラルな異質性について述べる。
この記述子は、質量効果による周囲の正常発作全体の組織変形の微妙な摂動の測定を含む。
論文 参考訳(メタデータ) (2021-03-12T17:38:54Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
低次元遺伝子バイオマーカーを発見するための,新しい,自動かつ教師なしのフレームワークを提案する。
本手法は,高次元中心型非監視クラスタリングアルゴリズムLP-Stabilityアルゴリズムに基づく。
私達の署名は免疫炎症および免疫砂漠の腫瘍の区別の有望な結果報告します。
論文 参考訳(メタデータ) (2021-02-11T09:04:45Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
放射線モデルは、グリオ芽腫(GBM)の結果予測のための臨床データを上回ることが示されています。
GBM患者の生存率(OS),IDH変異,O-6-メチルグアニン-DNA-メチルトランスフェラーゼ(MGMT)プロモーターメチル化,EGFR(EGFR)VII増幅,Ki-67発現の9種類の機械学習分類器を比較した。
xgb は os (74.5%), ab for idh 変異 (88%), mgmt メチル化 (71,7%), ki-67 発現 (86,6%), egfr増幅 (81。
論文 参考訳(メタデータ) (2021-02-10T15:10:37Z) - Predicting molecular phenotypes from histopathology images: a
transcriptome-wide expression-morphology analysis in breast cancer [1.3758771225117674]
乳癌におけるトランススクリプトームワイド・モロフォロジー(EMO)解析を初めて報告した。
遺伝子特異的モデルはmRNA発現の予測のために最適化され、検証された。
9,334遺伝子の予測はRNA配列推定と大きく関連していた。
論文 参考訳(メタデータ) (2020-09-18T16:27:53Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
本研究は,腹部CTで膵神経内分泌腫瘍(PNET)を早期に検出するための包括的結果を提示する。
我々の知る限りでは、このタスクは以前まで計算タスクとして研究されていなかった。
我々の手法は最先端のセグメンテーションネットワークより優れ、感度は89.47%、特異性は81.08%である。
論文 参考訳(メタデータ) (2020-04-04T21:21:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。