Theory of Quantum Games and Quantum Economic Behavior
- URL: http://arxiv.org/abs/2010.14098v2
- Date: Sat, 27 Nov 2021 07:49:24 GMT
- Title: Theory of Quantum Games and Quantum Economic Behavior
- Authors: Kazuki Ikeda and Shoto Aoki
- Abstract summary: We analyze a quantum economy in which players produce and consume quantum goods.
We find distinctive aspects of quantum games that cannot be explained by conventional classical games.
Those novel properties imply that quantum games also shed new light on theories of mechanism design, auction and contract in the quantum era.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quest of this work is to present discussions of some fundamental
questions of economics in the era of quantum technology, which require a
treatment different from economics studied thus far in the literature. A study
of quantum economic behavior will become the center of attention of economists
in the coming decades. We analyze a quantum economy in which players produce
and consume quantum goods. They meet randomly and barter with neighbors
bilaterally for quantum goods they produced. We clarify the conditions where
certain quantum goods emerge endogenously as media of exchange, called quantum
commodity money. As quantum strategies are entangled, we find distinctive
aspects of quantum games that cannot be explained by conventional classical
games. In some situations a quantum player can acquire a quantum good from
people regardless of their strategies, while on the other hand people can find
quantum strategies that improve their welfare based on an agreement. Those
novel properties imply that quantum games also shed new light on theories of
mechanism design, auction and contract in the quantum era.
Related papers
- Cloud-based Semi-Quantum Money [8.252999068253603]
In the 1970s, Wiesner introduced the concept of quantum money, where quantum states generated according to specific rules function as currency.
Quantum computers capable of minting and preserving quantum money have not yet emerged.
Existing quantum channels are not stable enough to support the efficient transmission of quantum states for quantum money.
arXiv Detail & Related papers (2024-07-16T07:40:17Z) - Photonic implementation of the quantum Morra game [69.65384453064829]
We study a faithful translation of a two-player quantum Morra game, which builds on previous work by including the classical game as a special case.
We propose a natural deformation of the game in the quantum regime in which Alice has a winning advantage, breaking the balance of the classical game.
We discuss potential applications of the quantum Morra game to the study of quantum information and communication.
arXiv Detail & Related papers (2023-11-14T19:41:50Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Is there evidence for exponential quantum advantage in quantum
chemistry? [45.33336180477751]
The idea to use quantum mechanical devices to simulate other quantum systems is commonly ascribed to Feynman.
It may be prudent to assume exponential speedups are not generically available for this problem.
arXiv Detail & Related papers (2022-08-03T16:33:57Z) - Quantum tomography explains quantum mechanics [0.0]
A suggestive notion for what constitutes a quantum detector leads to a logically impeccable definition of measurement.
The various forms of quantum tomography for quantum states, quantum detectors, quantum processes, and quantum instruments are discussed.
The new approach is closer to actual practice than the traditional foundations.
arXiv Detail & Related papers (2021-10-11T14:09:30Z) - Quantum information and beyond -- with quantum candies [0.0]
We investigate, extend, and greatly expand here "quantum candies" (invented by Jacobs)
"quantum" candies describe some basic concepts in quantum information, including quantum bits, complementarity, the no-cloning principle, and entanglement.
These demonstrations are done in an approachable manner, that can be explained to high-school students, without using the hard-to-grasp concept of superpositions and its mathematics.
arXiv Detail & Related papers (2021-09-30T16:05:33Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.