Cloud-based Semi-Quantum Money
- URL: http://arxiv.org/abs/2407.11454v1
- Date: Tue, 16 Jul 2024 07:40:17 GMT
- Title: Cloud-based Semi-Quantum Money
- Authors: Yichi Zhang, Siyuan Jin, Yuhan Huang, Bei Zeng, Qiming Shao,
- Abstract summary: In the 1970s, Wiesner introduced the concept of quantum money, where quantum states generated according to specific rules function as currency.
Quantum computers capable of minting and preserving quantum money have not yet emerged.
Existing quantum channels are not stable enough to support the efficient transmission of quantum states for quantum money.
- Score: 8.252999068253603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the 1970s, Wiesner introduced the concept of quantum money, where quantum states generated according to specific rules function as currency. These states circulate among users with quantum resources through quantum channels or face-to-face interactions. Quantum mechanics grants quantum money physical-level unforgeability but also makes minting, storing, and circulating it significantly challenging. Currently, quantum computers capable of minting and preserving quantum money have not yet emerged, and existing quantum channels are not stable enough to support the efficient transmission of quantum states for quantum money, limiting its practicality. Semi-quantum money schemes support fully classical transactions and complete classical banks, reducing dependence on quantum resources and enhancing feasibility. To further minimize the system's reliance on quantum resources, we propose a cloud-based semi-quantum money (CSQM) scheme. This scheme relies only on semi-honest third-party quantum clouds, while the rest of the system remains entirely classical. We also discuss estimating the computational power required by the quantum cloud for the scheme and conduct a security analysis.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Stochastic Qubit Resource Allocation for Quantum Cloud Computing [66.97282014860265]
In quantum cloud computing, quantum cloud providers provision quantum resources in reservation and on-demand plans for users.
We propose a quantum resource allocation for the quantum cloud computing system in which quantum resources and the minimum waiting time of quantum circuits are jointly optimized.
arXiv Detail & Related papers (2022-10-22T04:13:24Z) - Quantum Entanglement with Self-stabilizing Token Ring for Fault-tolerant
Distributed Quantum Computing System [0.0]
This paper shows how to construct quantum entanglement states of n qubits based on a self-stabilizing token ring algorithm.
The entangled states can be applied to the fields of the quantum network, quantum Internet, distributed quantum computing, and quantum cloud.
arXiv Detail & Related papers (2022-09-23T01:20:36Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - A prototype of quantum von Neumann architecture [0.0]
We propose a model of universal quantum computer system, the quantum version of the von Neumann architecture.
It uses ebits as elements of the quantum memory unit, and qubits as elements of the quantum control unit and processing unit.
Our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems.
arXiv Detail & Related papers (2021-12-17T06:33:31Z) - Practical quantum tokens without quantum memories and experimental tests [0.15749416770494706]
'S-money' tokens do not require quantum memories or long distance quantum communication.
We describe implementations of S-money schemes with off-the-shelf quantum key distribution technology.
We show that, given standard assumptions in mistrustful quantum cryptographic implementations, unforgeability and user privacy could be guaranteed.
arXiv Detail & Related papers (2021-04-23T17:03:33Z) - On quantum neural networks [91.3755431537592]
We argue that the concept of a quantum neural network should be defined in terms of its most general function.
Our reasoning is based on the use of the Feynman path integral formulation in quantum mechanics.
arXiv Detail & Related papers (2021-04-12T18:30:30Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum Technology for Economists [0.2867517731896504]
We discuss basic concepts in quantum computing and quantum communication.
We provide an overview of quantum money, an early invention of quantum communication literature.
We review all existing quantum speedups that have been identified for algorithms used to solve and estimate economic models.
arXiv Detail & Related papers (2020-12-08T15:14:24Z) - Theory of Quantum Games and Quantum Economic Behavior [0.0]
We analyze a quantum economy in which players produce and consume quantum goods.
We find distinctive aspects of quantum games that cannot be explained by conventional classical games.
Those novel properties imply that quantum games also shed new light on theories of mechanism design, auction and contract in the quantum era.
arXiv Detail & Related papers (2020-10-27T06:45:06Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.