論文の概要: Neuromorphic Integrated Sensing and Communications
- arxiv url: http://arxiv.org/abs/2209.11891v1
- Date: Sat, 24 Sep 2022 00:23:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 15:58:39.471748
- Title: Neuromorphic Integrated Sensing and Communications
- Title(参考訳): 神経形態的統合センシングとコミュニケーション
- Authors: Jiechen Chen, Nicolas Skatchkovsky, and Osvaldo Simeone
- Abstract要約: ニューロモルフィック統合センシングと通信(N-ISAC)を導入し,効率的なオンラインデータデコーディングとレーダセンシングを実現する。
N-ISACは、デジタル情報を伝達し、レーダーターゲットの有無を検出するために、共通のIR波形を利用する。
受信機にスパイキングニューラルネットワーク(SNN)を配置し、デジタルデータを復号し、受信した信号から直接レーダーターゲットを検出する。
- 参考スコア(独自算出の注目度): 28.475406916976247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic computing is an emerging technology that support event-driven
data processing for applications requiring efficient online inference and/or
control. Recent work has introduced the concept of neuromorphic communications,
whereby neuromorphic computing is integrated with impulse radio (IR)
transmission to implement low-energy and low-latency remote inference in
wireless IoT networks. In this paper, we introduce neuromorphic integrated
sensing and communications (N-ISAC), a novel solution that enables efficient
online data decoding and radar sensing. N-ISAC leverages a common IR waveform
for the dual purpose of conveying digital information and of detecting the
presence or absence of a radar target. A spiking neural network (SNN) is
deployed at the receiver to decode digital data and detect the radar target
using directly the received signal. The SNN operation is optimized by balancing
performance metric for data communications and radar sensing, highlighting
synergies and trade-offs between the two applications.
- Abstract(参考訳): ニューロモルフィックコンピューティングは、効率的なオンライン推論や制御を必要とするアプリケーションのためのイベント駆動データ処理をサポートする新興技術である。
最近の研究はニューロモルフィック通信の概念を導入し、ニューロモルフィックコンピューティングはインパルスラジオ(IR)伝送と統合され、無線IoTネットワークにおける低エネルギーかつ低レイテンシなリモート推論を実装している。
本稿では,ニューロモルフィック統合センシングと通信(N-ISAC)を導入し,効率的なオンラインデータデコーディングとレーダセンシングを実現する。
N-ISACは、デジタル情報を伝達し、レーダーターゲットの有無を検出するために共通のIR波形を利用する。
受信機にスパイキングニューラルネットワーク(SNN)を配置し、デジタルデータを復号し、受信した信号から直接レーダーターゲットを検出する。
SNN操作は、データ通信とレーダセンシングのパフォーマンス指標のバランスをとることで最適化され、2つのアプリケーション間の相乗効果とトレードオフが強調される。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
6G時代には、無線リソースのリアルタイムモニタリングと管理が、多様な無線アプリケーションをサポートするように求められている。
本稿では,GAN(Generative Adversarial Network)による協調的無線地図推定手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T05:01:28Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Neuromorphic Wireless Cognition: Event-Driven Semantic Communications
for Remote Inference [32.0035037154674]
本稿ではニューロモルフィックな無線インターネット・オブ・Thingsシステムのためのエンドツーエンドの設計を提案する。
各センサ装置は、ニューロモルフィックセンサと、スパイキングニューラルネットワーク(SNN)と、複数のアンテナを備えたインパルス無線送信機を備える。
パイロット、SNNの符号化、SNNの復号化、ハイパーネットワークは、複数のチャネル実現を通じて共同で訓練される。
論文 参考訳(メタデータ) (2022-06-13T11:13:39Z) - Integrating Sensing and Communication in Cellular Networks via NR
Sidelink [7.42576783544779]
我々は、その角度と回転依存性であるサイドリンクベースのRFセンシングに関する共通の問題について議論する。
本稿では,データの提案時間的特徴を捉えるためのグラフベースのエンコーダと,多角学習のための4つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-15T12:41:31Z) - Rethinking the Tradeoff in Integrated Sensing and Communication:
Recognition Accuracy versus Communication Rate [21.149708253108788]
ISAC(Integrated Sensistance and Communication)は、バンド利用効率を向上させるための有望な技術である。
センシング性能と通信性能の間にはトレードオフがある。
本稿では、認識精度と通信データレートを同時に最大化する多目的最適化問題を定式化し、解決する。
論文 参考訳(メタデータ) (2021-07-20T17:00:35Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - Spiking Neural Networks -- Part III: Neuromorphic Communications [38.518936229794214]
ますますワイヤレスに接続されるデバイスの存在は、機械学習の進歩を輸出しようと努力している。
帯域制限されたチャネルを介して接続されたバッテリ駆動デバイス上での学習と推論のための機械学習モデルの実装は依然として困難である。
本稿では、スパイキングニューラルネットワーク(SNN)がこれらのオープンな問題に対処する2つの方法を探る。
論文 参考訳(メタデータ) (2020-10-27T11:52:35Z) - End-to-End Learning of Neuromorphic Wireless Systems for Low-Power Edge
Artificial Intelligence [38.518936229794214]
我々は、ニューロモルフィックセンシング、インパルスラジオ(IR)、スパイキングニューラルネットワーク(SNN)に基づく、遠隔無線推論のための新しい「オールスパイク」低電力ソリューションを提案する。
我々は,エンコーダ,チャネル,デコーダのカスケードを,JSCC(Joint Source-Channel Coding)を実装した確率的SNNベースのオートエンコーダとして扱うエンドツーエンドのトレーニング手順を導入する。
実験により、提案したエンドツーエンドのニューロモルフィックエッジアーキテクチャが、効率的で低レイテンシなリモートセンシング、通信、推論のための有望なフレームワークを提供することを確認した。
論文 参考訳(メタデータ) (2020-09-03T09:10:16Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
スパイキングニューラルネットワーク(SNN)を用いた生時間パルスで直接物体認識問題に対処する手法を提案する。
各種データセットを用いて評価した結果,提案手法は最先端の手法に匹敵する性能を示しながら,優れた時間効率を実現している。
論文 参考訳(メタデータ) (2020-01-24T22:58:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。