Interpretable Machine Learning in Physics: A Review
- URL: http://arxiv.org/abs/2503.23616v1
- Date: Sun, 30 Mar 2025 22:44:40 GMT
- Title: Interpretable Machine Learning in Physics: A Review
- Authors: Sebastian Johann Wetzel, Seungwoong Ha, Raban Iten, Miriam Klopotek, Ziming Liu,
- Abstract summary: We aim to establish interpretable machine learning as a core research focus in science.<n>We categorize different aspects of interpretability, discuss machine learning models in terms of both interpretability and performance.<n>We highlight recent advances in interpretable machine learning across many subfields of physics.
- Score: 10.77934040629518
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning is increasingly transforming various scientific fields, enabled by advancements in computational power and access to large data sets from experiments and simulations. As artificial intelligence (AI) continues to grow in capability, these algorithms will enable many scientific discoveries beyond human capabilities. Since the primary goal of science is to understand the world around us, fully leveraging machine learning in scientific discovery requires models that are interpretable -- allowing experts to comprehend the concepts underlying machine-learned predictions. Successful interpretations increase trust in black-box methods, help reduce errors, allow for the improvement of the underlying models, enhance human-AI collaboration, and ultimately enable fully automated scientific discoveries that remain understandable to human scientists. This review examines the role of interpretability in machine learning applied to physics. We categorize different aspects of interpretability, discuss machine learning models in terms of both interpretability and performance, and explore the philosophical implications of interpretability in scientific inquiry. Additionally, we highlight recent advances in interpretable machine learning across many subfields of physics. By bridging boundaries between disciplines -- each with its own unique insights and challenges -- we aim to establish interpretable machine learning as a core research focus in science.
Related papers
- Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.
AGS aims to significantly reduce the time and resources needed for scientific discovery.
As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - A Perspective on Symbolic Machine Learning in Physical Sciences [10.091537548478655]
The rate at which machine learning is impacting non-scientific disciplines is incomparable to that in the physical sciences.<n> Symbolic machine learning stands as an equal and complementary partner to numerical machine learning in speeding up scientific discovery in physics.
arXiv Detail & Related papers (2025-02-25T09:02:02Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
This Perspective explores the sources and implications of diverse explanations in machine learning applications for physical sciences.
We examine how different models, explanation methods, levels of feature attribution, and stakeholder needs can result in varying interpretations of ML outputs.
Our analysis underscores the importance of considering multiple perspectives when interpreting ML models in scientific contexts.
arXiv Detail & Related papers (2024-02-01T05:28:28Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Interpretable and Explainable Machine Learning for Materials Science and
Chemistry [2.2175470459999636]
We summarize applications of interpretability and explainability techniques for materials science and chemistry.
We discuss various challenges for interpretable machine learning in materials science and, more broadly, in scientific settings.
We showcase a number of exciting developments in other fields that could benefit interpretability in material science and chemistry problems.
arXiv Detail & Related papers (2021-11-01T15:40:36Z) - Scientific intuition inspired by machine learning generated hypotheses [2.294014185517203]
We shift the focus on the insights and the knowledge obtained by the machine learning models themselves.
We apply gradient boosting in decision trees to extract human interpretable insights from big data sets from chemistry and physics.
The ability to go beyond numerics opens the door to use machine learning to accelerate the discovery of conceptual understanding.
arXiv Detail & Related papers (2020-10-27T12:12:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.