論文の概要: Structured Visual Search via Composition-aware Learning
- arxiv url: http://arxiv.org/abs/2010.14438v1
- Date: Tue, 27 Oct 2020 16:52:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 12:24:27.970821
- Title: Structured Visual Search via Composition-aware Learning
- Title(参考訳): 構成認識学習による構造化ビジュアル検索
- Authors: Mert Kilickaya and Arnold W.M. Smeulders
- Abstract要約: 本稿では,構造化クエリを用いた視覚探索について検討する。
この構造は、オブジェクトの位置とカテゴリをエンコードする2D合成の形をしている。
- 参考スコア(独自算出の注目度): 20.794769708528047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies visual search using structured queries. The structure is
in the form of a 2D composition that encodes the position and the category of
the objects. The transformation of the position and the category of the objects
leads to a continuous-valued relationship between visual compositions, which
carries highly beneficial information, although not leveraged by previous
techniques. To that end, in this work, our goal is to leverage these continuous
relationships by using the notion of symmetry in equivariance. Our model output
is trained to change symmetrically with respect to the input transformations,
leading to a sensitive feature space. Doing so leads to a highly efficient
search technique, as our approach learns from fewer data using a smaller
feature space. Experiments on two large-scale benchmarks of MS-COCO and
HICO-DET demonstrates that our approach leads to a considerable gain in the
performance against competing techniques.
- Abstract(参考訳): 本稿では構造化クエリを用いたビジュアル検索について検討する。
この構造は、オブジェクトの位置とカテゴリをエンコードする2D合成の形をしている。
オブジェクトの位置とカテゴリの変換は、視覚的構成間の連続的な値の関係をもたらし、非常に有益な情報を伝達するが、以前の手法では利用されない。
この研究の目的は、同値の対称性の概念を利用することで、これらの連続的な関係を活用することである。
我々のモデル出力は入力変換に対して対称に変化するように訓練されており、感度の高い特徴空間をもたらす。
提案手法は,より小さな特徴空間を用いて少ないデータから学習するので,高い効率の検索手法がもたらされる。
MS-COCOとHICO-DETの2つの大規模ベンチマーク実験により,本手法が競合技術に対する性能向上につながることが示された。
関連論文リスト
- GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
ペアワイド類似性学習のためのモダリティ間の強力な関係を捕捉する汎用構造スパースを提案する。
距離メートル法は、対角線とブロック対角線の2つの形式を微妙にカプセル化する。
クロスモーダルと2つの余分なユニモーダル検索タスクの実験は、その優位性と柔軟性を検証した。
論文 参考訳(メタデータ) (2024-10-20T03:45:50Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
薬物と標的の相互作用の予測は、薬物の発見と設計に不可欠である。
グラフニューラルネットワーク(GNN)やトランスフォーマーに基づく最近の手法は、さまざまなデータセットで例外的なパフォーマンスを示している。
我々は,GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムを多用することにより,構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2024-07-04T16:56:59Z) - Explicitly Disentangled Representations in Object-Centric Learning [0.0]
本稿では, オブジェクト中心のモデルを, 密接な形状やテクスチャ成分に偏在させる新しいアーキテクチャを提案する。
特に, オブジェクト中心のモデルを, 密接な形状やテクスチャ成分に偏在させる新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-18T17:22:11Z) - Dynamic Visual Semantic Sub-Embeddings and Fast Re-Ranking [0.5242869847419834]
情報エントロピーを低減するために動的ビジュアルセマンティックサブエンベッドディングフレームワーク(DVSE)を提案する。
生成した候補埋め込みに様々な意味的変動を捉えるよう促すため,混合分布を構築した。
3つのベンチマークデータセット上の4つの画像特徴エンコーダと2つのテキスト特徴エンコーダを用いて,既存のセットベース手法と比較した。
論文 参考訳(メタデータ) (2023-09-15T04:39:11Z) - Exploring Predicate Visual Context in Detecting Human-Object
Interactions [44.937383506126274]
クロスアテンションによる画像特徴の再導入について検討する。
PViCはHICO-DETおよびV-COCOベンチマークにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-08-11T15:57:45Z) - Investigating Graph Structure Information for Entity Alignment with
Dangling Cases [31.779386064600956]
エンティティアライメントは、異なる知識グラフ(KG)における等価なエンティティを見つけることを目的としている。
Weakly-optimal Graph Contrastive Learning (WOGCL) と呼ばれる新しいエンティティアライメントフレームワークを提案する。
We show that WOGCL are outperforms the current-of-the-art method with pure structure information in traditional (relaxed) and dangling settings。
論文 参考訳(メタデータ) (2023-04-10T17:24:43Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
我々は,モノクロ画像から未確認物体の3次元配向を推定する作業に取り組む。
我々は検索ベースの戦略に従い、ネットワークがオブジェクト固有の特徴を学習するのを防ぐ。
また,LineMOD,LineMOD-Occluded,T-LESSのデータセットを用いた実験により,本手法が従来の手法よりもはるかに優れた一般化をもたらすことが示された。
論文 参考訳(メタデータ) (2022-03-16T08:53:00Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
この研究の目的は、一対のイメージから視覚的に類似したパターンを効率的に識別することである。
画像中のオブジェクトセグメントを選択し、それを別の画像にコピーペーストすることで、合成トレーニングペアを生成する。
提案手法は,Brueghelデータセット上でのアートワークの詳細検索に対して,明確な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-10-29T16:51:16Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - CoSformer: Detecting Co-Salient Object with Transformers [2.3148470932285665]
Co-Salient Object Detection (CoSOD) は、人間の視覚システムをシミュレートして、関連する画像のグループから共通および重度のオブジェクトを発見することを目的としています。
複数の画像から高精細かつ一般的な視覚パターンを抽出するCo-Salient Object Detection Transformer (CoSformer) ネットワークを提案する。
論文 参考訳(メタデータ) (2021-04-30T02:39:12Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
弱教師付き画像ラベルを持つ対象クラスにおける局所化モデル学習の問題点について検討する。
本研究では,対象関数のみの学習は知識伝達の弱い形態であると主張する。
COCOおよびILSVRC 2013検出データセットの実験では、ペアワイズ類似度関数を含むことにより、ローカライズモデルの性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-03-18T17:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。