論文の概要: Speech-Based Emotion Recognition using Neural Networks and Information
Visualization
- arxiv url: http://arxiv.org/abs/2010.15229v1
- Date: Wed, 28 Oct 2020 20:57:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 06:23:05.800182
- Title: Speech-Based Emotion Recognition using Neural Networks and Information
Visualization
- Title(参考訳): ニューラルネットワークと情報可視化を用いた音声に基づく感情認識
- Authors: Jumana Almahmoud and Kruthika Kikkeri
- Abstract要約: 本研究では,音声成分から音声サンプルを抽出し,様々な感情を識別するツールを提案する。
ダッシュボードは、音声データの直感的な表現のために、局所的なセラピストのニーズに基づいて設計されている。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emotions recognition is commonly employed for health assessment. However, the
typical metric for evaluation in therapy is based on patient-doctor appraisal.
This process can fall into the issue of subjectivity, while also requiring
healthcare professionals to deal with copious amounts of information. Thus,
machine learning algorithms can be a useful tool for the classification of
emotions. While several models have been developed in this domain, there is a
lack of userfriendly representations of the emotion classification systems for
therapy. We propose a tool which enables users to take speech samples and
identify a range of emotions (happy, sad, angry, surprised, neutral, clam,
disgust, and fear) from audio elements through a machine learning model. The
dashboard is designed based on local therapists' needs for intuitive
representations of speech data in order to gain insights and informative
analyses of their sessions with their patients.
- Abstract(参考訳): 感情認識は一般的に健康評価に使用される。
しかし, 治療評価の典型的な指標は, 患者・医師による評価に基づいている。
このプロセスは主観性の問題に陥り得る一方で、医療専門家は膨大な量の情報を扱う必要がある。
したがって、機械学習アルゴリズムは感情の分類に有用なツールになり得る。
この領域でいくつかのモデルが開発されているが、治療のための感情分類システムのユーザフレンドリーな表現が欠けている。
本稿では,音声要素から音声サンプルを抽出し,機械学習モデルを用いて感情(幸福感,悲しみ感,怒り感,驚き感,中立感,クラム感,嫌悪感,恐怖感)を識別するツールを提案する。
このダッシュボードは、患者とのセッションの洞察と情報分析を得るために、音声データの直感的な表現をローカルセラピストのニーズに基づいて設計されている。
関連論文リスト
- Towards Empathetic Conversational Recommender Systems [77.53167131692]
本稿では,共感型会話レコメンデータ(ECR)フレームワークを提案する。
ECRには、感情対応アイテムレコメンデーションと感情対応応答生成という、2つの主要なモジュールが含まれている。
ReDialデータセットの実験は、推奨精度を高め、ユーザの満足度を向上させる上で、我々のフレームワークの有効性を検証する。
論文 参考訳(メタデータ) (2024-08-30T15:43:07Z) - Speech Emotion Recognition Using CNN and Its Use Case in Digital Healthcare [0.0]
人間の感情と感情状態を音声から識別するプロセスは、音声感情認識(SER)として知られている。
私の研究は、畳み込みニューラルネットワーク(CNN)を使って、音声録音と感情を区別し、異なる感情の範囲に応じてラベル付けすることを目指しています。
私は、機械学習手法を用いて、供給された音声ファイルから感情を識別する機械学習モデルを開発した。
論文 参考訳(メタデータ) (2024-06-15T21:33:03Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
我々はBrain-Computer Interface技術を用いてユーザの好みを推測し、その注意力は視覚的コンテンツと感情的体験との関連性に相関する。
我々はこれらを,情報検索,生成モデルのパーソナライズされたステアリング,感情経験のクラウドソーシング人口推定など,関連するアプリケーションにリンクする。
論文 参考訳(メタデータ) (2024-05-15T20:41:46Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - An Approach for Improving Automatic Mouth Emotion Recognition [1.5293427903448025]
この研究は、畳み込みニューラルネットワーク(CNN)を用いた口検出による自動感情認識技術の提案と試験である。
この技術は、コミュニケーションスキルの問題のある健康障害の人々を支援するために応用される。
論文 参考訳(メタデータ) (2022-12-12T16:17:21Z) - Accurate Emotion Strength Assessment for Seen and Unseen Speech Based on
Data-Driven Deep Learning [70.30713251031052]
本研究では,データ駆動型深層学習モデル,すなわちSenseNetを提案する。
実験の結果,提案した強度ネットの予測感情強度は,目視と目視の両方の真理値と高い相関性を示した。
論文 参考訳(メタデータ) (2022-06-15T01:25:32Z) - Emotion Recognition for Healthcare Surveillance Systems Using Neural
Networks: A Survey [8.31246680772592]
本稿では、ニューラルネットワークを用いた感情認識の分野での最近の研究について述べる。
我々は、感情の認識を音声、表情、音声視覚入力から研究することに集中する。
これら3つの感情認識技術は、患者を監視するための医療センターの監視システムとして使用できる。
論文 参考訳(メタデータ) (2021-07-13T11:17:00Z) - Emotion Recognition of the Singing Voice: Toward a Real-Time Analysis
Tool for Singers [0.0]
現在の計算感情研究は、感情が数学的に知覚される方法を分析するために音響特性を適用することに焦点を当てている。
本稿は,関連する研究の知見を反映し,拡張し,この目標に向けての一歩を踏み出す。
論文 参考訳(メタデータ) (2021-05-01T05:47:15Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
通常のRGBビデオから始まるボディーランゲージに基づく感情認識のための自動フレームワークを提案する。
心理学者との連携により,精神症状予測の枠組みを拡張した。
提案されたフレームワークの特定のアプリケーションドメインは限られた量のデータしか供給しないため、フレームワークは小さなトレーニングセットで動作するように設計されている。
論文 参考訳(メタデータ) (2020-10-30T18:45:16Z) - Emotion Recognition System from Speech and Visual Information based on
Convolutional Neural Networks [6.676572642463495]
本研究では,感情を高精度かつリアルタイムに認識できるシステムを提案する。
音声認識システムの精度を高めるため、音声データも分析し、両情報源から得られる情報を融合する。
論文 参考訳(メタデータ) (2020-02-29T22:09:46Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。