論文の概要: An Approach for Improving Automatic Mouth Emotion Recognition
- arxiv url: http://arxiv.org/abs/2212.06009v1
- Date: Mon, 12 Dec 2022 16:17:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 17:06:47.996273
- Title: An Approach for Improving Automatic Mouth Emotion Recognition
- Title(参考訳): 自動口内感情認識の改良の試み
- Authors: Giulio Biondi, Valentina Franzoni, Osvaldo Gervasi, Damiano Perri
- Abstract要約: この研究は、畳み込みニューラルネットワーク(CNN)を用いた口検出による自動感情認識技術の提案と試験である。
この技術は、コミュニケーションスキルの問題のある健康障害の人々を支援するために応用される。
- 参考スコア(独自算出の注目度): 1.5293427903448025
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The study proposes and tests a technique for automated emotion recognition
through mouth detection via Convolutional Neural Networks (CNN), meant to be
applied for supporting people with health disorders with communication skills
issues (e.g. muscle wasting, stroke, autism, or, more simply, pain) in order to
recognize emotions and generate real-time feedback, or data feeding supporting
systems. The software system starts the computation identifying if a face is
present on the acquired image, then it looks for the mouth location and
extracts the corresponding features. Both tasks are carried out using Haar
Feature-based Classifiers, which guarantee fast execution and promising
performance. If our previous works focused on visual micro-expressions for
personalized training on a single user, this strategy aims to train the system
also on generalized faces data sets.
- Abstract(参考訳): 本研究は,コンボリューションニューラルネット(cnn)を介して,感情を認識し,リアルタイムフィードバックを生成するために,コミュニケーションスキルの問題(筋肉の浪費,脳卒中,自閉症,より簡単には痛みなど)を伴う健康障害を持つ人を支援することを目的とした,口内検出による感情自動認識手法の提案とテストを行う。
ソフトウェアシステムは、取得した画像に顔が存在するかどうかを識別する計算を開始し、次に口の位置を探し、対応する特徴を抽出する。
両方のタスクはhaar機能ベースの分類器を使用して実行され、高速実行と有望なパフォーマンスが保証される。
これまでの作業が,単一ユーザに対するパーソナライズされたトレーニングのための視覚的なマイクロ表現に重点を置いていたならば,この戦略は,汎用的な顔データセットでもシステムをトレーニングすることを目的としています。
関連論文リスト
- Emotion Detection through Body Gesture and Face [0.0]
このプロジェクトは、非顔の手がかり、特に手、身体のジェスチャー、ジェスチャーに焦点を当てることによる感情認識の課題に対処する。
従来の感情認識システムは、主に表情分析に依存しており、ボディランゲージを通して伝達される豊かな感情情報を無視することが多い。
このプロジェクトの目的は、マシンが人間の感情をより包括的でニュアンスな方法で解釈し、反応する能力を高めることで、感情コンピューティングの分野に貢献することにある。
論文 参考訳(メタデータ) (2024-07-13T15:15:50Z) - Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
感情中心型生成的リプレイ (ECgr) は, 生成的対向ネットワークから合成画像を統合することで, この課題に対処する。
ECgrは、生成された画像の忠実性を保証するために品質保証アルゴリズムを組み込んでいる。
4つの多様な表情データセットに対する実験結果から,擬似リハーサル法により生成されたイメージを組み込むことで,ターゲットとするデータセットとソースデータセットのトレーニングが促進されることが示された。
論文 参考訳(メタデータ) (2024-04-18T15:28:34Z) - Leveraging Previous Facial Action Units Knowledge for Emotion
Recognition on Faces [2.4158349218144393]
本稿では,感情認識のための顔行動単位(AU)認識手法を提案する。
この認識はFACS(Facial Action Coding System)に基づいており、機械学習システムによって計算される。
論文 参考訳(メタデータ) (2023-11-20T18:14:53Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Learning Emotional-Blinded Face Representations [77.7653702071127]
感情反応に関連する表情に盲目な2つの顔表現を提案する。
この作業は、個人データ保護に関する新たな国際規則によって動機付けられている。
論文 参考訳(メタデータ) (2020-09-18T09:24:10Z) - Emotion Recognition System from Speech and Visual Information based on
Convolutional Neural Networks [6.676572642463495]
本研究では,感情を高精度かつリアルタイムに認識できるシステムを提案する。
音声認識システムの精度を高めるため、音声データも分析し、両情報源から得られる情報を融合する。
論文 参考訳(メタデータ) (2020-02-29T22:09:46Z) - An End-to-End Visual-Audio Attention Network for Emotion Recognition in
User-Generated Videos [64.91614454412257]
畳み込みニューラルネットワーク(CNN)に基づくエンドツーエンドの映像感情認識を提案する。
具体的には,空間的,チャネル的,時間的注意を視覚的に3D CNNに統合し,時間的注意をオーディオ2D CNNに組み込む新しいアーキテクチャである,深層ビジュアル・オーディオ・アテンション・ネットワーク(VAANet)を開発した。
論文 参考訳(メタデータ) (2020-02-12T15:33:59Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - An adversarial learning framework for preserving users' anonymity in
face-based emotion recognition [6.9581841997309475]
本稿では,反復的手順で学習した畳み込みニューラルネットワーク(CNN)アーキテクチャに依存する逆学習フレームワークを提案する。
その結果、提案手法は、感情認識の精度を保ち、顔認証の劣化を抑えるための畳み込み変換を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-01-16T22:45:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。