Object sieving and morphological closing to reduce false detections in
wide-area aerial imagery
- URL: http://arxiv.org/abs/2010.15260v1
- Date: Wed, 28 Oct 2020 22:20:17 GMT
- Title: Object sieving and morphological closing to reduce false detections in
wide-area aerial imagery
- Authors: Xin Gao, Sundaresh Ram, and Jeffrey J. Rodriguez
- Abstract summary: We propose a two-stage post-processing scheme which comprises an area-thresholding sieving process and a morphological closing operation.
We use two wide-area aerial videos to compare the performance of five object detection algorithms in the absence and in the presence of our post-processing scheme.
- Score: 12.283960732404163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For object detection in wide-area aerial imagery, post-processing is usually
needed to reduce false detections. We propose a two-stage post-processing
scheme which comprises an area-thresholding sieving process and a morphological
closing operation. We use two wide-area aerial videos to compare the
performance of five object detection algorithms in the absence and in the
presence of our post-processing scheme. The automatic detection results are
compared with the ground-truth objects. Several metrics are used for
performance comparison.
Related papers
- Overcoming Scene Context Constraints for Object Detection in wild using Defilters [3.038642416291856]
High-level computer vision tasks such as object detection, recognition, and segmentation are particularly sensitive to image distortion.
We propose an image defilter to rectify image distortion prior to object detection.
This method enhances object detection accuracy, as models perform optimally when trained on non-distorted images.
arXiv Detail & Related papers (2024-04-12T07:30:52Z) - Linear Object Detection in Document Images using Multiple Object
Tracking [58.720142291102135]
Linear objects convey substantial information about document structure.
Many approaches can recover some vector representation, but only one closed-source technique introduced in 1994.
We propose a framework for accurate instance segmentation of linear objects in document images using Multiple Object Tracking.
arXiv Detail & Related papers (2023-05-26T14:22:03Z) - Learning to search for and detect objects in foveal images using deep
learning [3.655021726150368]
This study employs a fixation prediction model that emulates human objective-guided attention of searching for a given class in an image.
The foveated pictures at each fixation point are then classified to determine whether the target is present or absent in the scene.
We present a novel dual task model capable of performing fixation prediction and detection simultaneously, allowing knowledge transfer between the two tasks.
arXiv Detail & Related papers (2023-04-12T09:50:25Z) - A Coarse to Fine Framework for Object Detection in High Resolution Image [8.316322664637537]
Current approaches of object detection seldom consider detecting tiny object or the large scale variance problem in high resolution images.
We introduce a simple yet efficient approach that improves accuracy of object detection especially for small objects and large scale variance scene.
Our approach can make good use of the sparsity of the objects and the information in high-resolution image, thereby making the detection more efficient.
arXiv Detail & Related papers (2023-03-02T13:04:33Z) - ObjectFormer for Image Manipulation Detection and Localization [118.89882740099137]
We propose ObjectFormer to detect and localize image manipulations.
We extract high-frequency features of the images and combine them with RGB features as multimodal patch embeddings.
We conduct extensive experiments on various datasets and the results verify the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-03-28T12:27:34Z) - Focus-and-Detect: A Small Object Detection Framework for Aerial Images [1.911678487931003]
We propose a two-stage object detection framework called "Focus-and-Detect"
The first stage generates clusters of objects constituting the focused regions.
The second stage, which is also an object detector network, predicts objects within the focal regions.
Results indicate that the proposed two-stage framework achieves an AP score of 42.06 on VisDrone validation dataset.
arXiv Detail & Related papers (2022-03-24T10:43:56Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
We propose a method for ensembling the outputs of multiple object detectors for improving detection performance and precision of bounding boxes on image data.
We extend it to video data by proposing a two-stage tracking-based scheme for detection refinement.
arXiv Detail & Related papers (2021-02-09T12:38:16Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image.
This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects.
arXiv Detail & Related papers (2020-03-28T18:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.