Hierarchical classical metastability in an open quantum East model
- URL: http://arxiv.org/abs/2010.15304v1
- Date: Thu, 29 Oct 2020 01:42:58 GMT
- Title: Hierarchical classical metastability in an open quantum East model
- Authors: Dominic C. Rose, Katarzyna Macieszczak, Igor Lesanovsky, Juan P.
Garrahan
- Abstract summary: We show that the driven open quantum East model features a hierarchy of classical metastabilities at low temperature and weak driving field.
We find that the effective long-time description of its dynamics is not only classical, but shares many properties with the classical East model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study in detail an open quantum generalisation of a classical kinetically
constrained model -- the East model -- known to exhibit slow glassy dynamics
stemming from a complex hierarchy of metastable states with distinct lifetimes.
Using the recently introduced theory of classical metastability for open
quantum systems, we show that the driven open quantum East model features a
hierarchy of classical metastabilities at low temperature and weak driving
field. We find that the effective long-time description of its dynamics is not
only classical, but shares many properties with the classical East model, such
as obeying an effective detailed balance condition, and lacking static
interactions between excitations, but with this occurring within a modified set
of metastable phases which are coherent, and with an effective temperature that
is dependent on the coherent drive.
Related papers
- Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Unravelling Metastable Markovian Open Quantum Systems [0.0]
We analyse the dynamics of metastable Markovian open quantum systems by unravelling their average dynamics into trajectories.
We use quantum reset processes as examples to illustrate metastable phenomenology.
arXiv Detail & Related papers (2023-08-27T13:46:24Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Mean-field dynamics of open quantum systems with collective
operator-valued rates: validity and application [0.0]
We consider a class of open quantum many-body Lindblad dynamics characterized by an all-to-all coupling Hamiltonian.
We study the time evolution in the limit of infinitely large systems, and we demonstrate the exactness of the mean-field equations for the dynamics of average operators.
Our results allow for a rigorous and systematic investigation of the impact of quantum effects on paradigmatic classical models.
arXiv Detail & Related papers (2023-02-08T15:58:39Z) - Learning in quantum games [41.67943127631515]
We show that the induced quantum state dynamics decompose into (i) a classical, commutative component which governs the dynamics of the system's eigenvalues.
We find that the FTQL dynamics incur no more than constant regret in all quantum games.
arXiv Detail & Related papers (2023-02-05T08:23:04Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z) - Dynamical robustness of topological end states in nonreciprocal
Su-Schrieffer-Heeger models with open boundary conditions [0.41998444721319217]
We study the dynamics of an initial end state in nonreciprocal Su-Schrieffer-Heeger models under open boundary conditions.
We find that it is dynamically more robust than its Hermitian counterpart, because the non-Hermitian skin effect can suppress the part leaking to the bulk sites.
arXiv Detail & Related papers (2020-08-28T06:07:30Z) - Theory of classical metastability in open quantum systems [0.0]
We present a general theory of classical metastability in open quantum systems.
We show that classical dynamics is observed not only on average, but also at the level of individual quantum trajectories.
arXiv Detail & Related papers (2020-06-01T20:00:01Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.