論文の概要: Limitations of the recall capabilities in delay based reservoir
computing systems
- arxiv url: http://arxiv.org/abs/2010.15562v1
- Date: Wed, 16 Sep 2020 13:54:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 00:55:21.341623
- Title: Limitations of the recall capabilities in delay based reservoir
computing systems
- Title(参考訳): 遅延型貯留層計算システムにおけるリコール能力の限界
- Authors: Felix K\"oster, Dominik Ehlert, Kathy L\"udge
- Abstract要約: 我々は,遅延型貯水池コンピュータのメモリ容量を,ホップ正規形を非線形性として解析する。
物理的実現の可能性としては、外部キャビティを持つレーザーが考えられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the memory capacity of a delay based reservoir computer with a
Hopf normal form as nonlinearity and numerically compute the linear as well as
the higher order recall capabilities. A possible physical realisation could be
a laser with external cavity, for which the information is fed via electrical
injection. A task independent quantification of the computational capability of
the reservoir system is done via a complete orthonormal set of basis functions.
Our results suggest that even for constant readout dimension the total memory
capacity is dependent on the ratio between the information input period, also
called the clock cycle, and the time delay in the system. Optimal performance
is found for a time delay about 1.6 times the clock cycle
- Abstract(参考訳): 我々は,遅延型貯水池コンピュータのメモリ容量を非線形性として解析し,線形および高次リコール能力の数値計算を行う。
物理的実現の可能性としては、外部キャビティを持つレーザーがあり、その情報は電気注入によって供給される。
貯水池システムの計算能力のタスク独立定量化は、基底関数の完全な正規直交集合によって行われる。
この結果から,記憶容量が一定の読み出し次元であっても,クロックサイクルと呼ばれる情報入力期間とシステムの時間遅延の比率に依存することが示唆された。
クロックサイクルの約1.6倍の時間遅延で最適性能が見つかる
関連論文リスト
- Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework [56.82432591933544]
分散勾配降下(SGD)は、計算リソースのスケーリング、トレーニング時間の短縮、マシンラーニングにおけるユーザのプライバシ保護の支援などにより、近年注目されている。
本稿では,遅延微分方程式(SDDE)と勾配到着の近似に基づく分散SGDの実行時間と安定化について述べる。
活性化作業員の増加は, 安定度による分散SGDを必ずしも加速させるものではないことが興味深い。
論文 参考訳(メタデータ) (2024-06-17T02:56:55Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
我々は,スタートアップが開発中の流体力学系のモデルと,計算貯水池としてインターフェースする。
我々は、進化探索アルゴリズムを用いて、読み出し時間と入力を波の振幅や周波数にどのようにマッピングするかを最適化した。
この貯水池システムに進化的手法を適用することで、手作業パラメータを用いた実装と比較して、XNORタスクの分離性が大幅に向上した。
論文 参考訳(メタデータ) (2023-04-20T19:15:02Z) - Hitless memory-reconfigurable photonic reservoir computing architecture [1.4479776639062198]
貯留層計算(Reservoir computing)は、時間依存的な信号を効率的に処理するためのアナログバイオインスパイアされた計算モデルである。
非対称なマッハ・ツェンダー干渉計を共振器内に集積した新しいTDRCアーキテクチャを提案する。
本稿では,この手法を時間ビットワイズXORタスクで実証し,メモリ容量再構成によって最適な性能が達成できることを結論する。
論文 参考訳(メタデータ) (2022-07-13T14:43:40Z) - Master memory function for delay-based reservoir computers with
single-variable dynamics [0.0]
多くの遅延型貯水池コンピュータはユニバーサルマスターメモリ関数(MMF)によって特徴付けられることを示す。
2つの独立したパラメータに対して計算されると、この関数は小さな入力を持つ遅延ベースの単一変数貯水池に対して線形メモリ容量を提供する。
論文 参考訳(メタデータ) (2021-08-28T13:17:24Z) - Natural quantum reservoir computing for temporal information processing [4.785845498722406]
貯留層計算(Reservoir computing)は、人工的または物理的散逸動態を利用する時間情報処理システムである。
本稿では, 量子ビットに付加される自然ノイズによって散逸特性が供給される貯水池として, 現実の超伝導量子コンピューティングデバイスを用いる方法を提案する。
論文 参考訳(メタデータ) (2021-07-13T01:58:57Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z) - Insight into Delay Based Reservoir Computing via Eigenvalue Analysis [0.0]
この方法で貯水池として用いられる力学系を解析できることを示す。
固有値が0に近い実部と非共振虚部を持つ系に対して最適性能を求める。
論文 参考訳(メタデータ) (2020-09-16T20:41:47Z) - The Computational Capacity of LRC, Memristive and Hybrid Reservoirs [1.657441317977376]
貯留層計算(Reservoir computing)は、高次元力学系(enmphreservoir)を用いて時系列データを近似し予測する機械学習パラダイムである。
本稿では, 線形素子(抵抗素子, インダクタ, コンデンサ)と非線形メモリ素子(メムリスタ)の両方を含む電子貯水池の実現可能性と最適設計について分析する。
我々の電子貯水池は、従来の「エコステートネットワーク」貯水池の性能と直接ハードウェアで実装される形で一致または超過することができる。
論文 参考訳(メタデータ) (2020-08-31T21:24:45Z) - HiPPO: Recurrent Memory with Optimal Polynomial Projections [93.3537706398653]
本稿では,連続信号と離散時系列をベースに投影してオンライン圧縮するための一般フレームワーク(HiPPO)を提案する。
過去の各時間ステップの重要性を示す尺度が与えられた場合、HiPPOは自然なオンライン関数近似問題に対する最適解を生成する。
このフォーマルなフレームワークは、すべての履歴を記憶するために時間をかけてスケールする新しいメモリ更新メカニズム(HiPPO-LegS)を提供する。
論文 参考訳(メタデータ) (2020-08-17T23:39:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。