論文の概要: CRICTRS: Embeddings based Statistical and Semi Supervised Cricket Team
Recommendation System
- arxiv url: http://arxiv.org/abs/2010.15607v1
- Date: Mon, 26 Oct 2020 15:35:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 11:01:50.805932
- Title: CRICTRS: Embeddings based Statistical and Semi Supervised Cricket Team
Recommendation System
- Title(参考訳): crictrs:embedsベースの統計および半教師付きクリケットチームレコメンデーションシステム
- Authors: Prazwal Chhabra, Rizwan Ali, Vikram Pudi
- Abstract要約: クリケットのためのチームレコメンデーションシステムを構築するための半教師付き統計手法を提案する。
我々は,対戦相手の強みを考慮した質的,定量的な評価システムを設計し,演奏者のパフォーマンスを評価する。
また、チーム内の打者やボーラーの数を含むチーム構成の重要な側面にも取り組みます。
- 参考スコア(独自算出の注目度): 6.628230604022489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Team Recommendation has always been a challenging aspect in team sports. Such
systems aim to recommend a player combination best suited against the
opposition players, resulting in an optimal outcome. In this paper, we propose
a semi-supervised statistical approach to build a team recommendation system
for cricket by modelling players into embeddings. To build these embeddings, we
design a qualitative and quantitative rating system which considers the
strength of opposition also for evaluating player performance. The embeddings
obtained, describes the strengths and weaknesses of the players based on past
performances of the player. We also embark on a critical aspect of team
composition, which includes the number of batsmen and bowlers in the team. The
team composition changes over time, depending on different factors which are
tough to predict, so we take this input from the user and use the player
embeddings to decide the best possible team combination with the given team
composition.
- Abstract(参考訳): チームレコメンデーションはチームスポーツにおいて常に難しい側面でした。
このようなシステムは、対戦相手に最も適したプレイヤーの組み合わせを推奨し、最適な結果をもたらす。
本稿では,プレイヤーを埋め込みにモデル化することでクリケットのチーム推薦システムを構築するための半教師付き統計手法を提案する。
これらの埋め込みを構築するために,プレイヤーのパフォーマンス評価にも反対者の強度を考慮した質的で定量的な評価システムを設計する。
得られた埋め込みは、プレーヤーの過去のパフォーマンスに基づいてプレイヤーの強みと弱みを記述する。
また、チーム構成において、チーム内のバットマンとボウラーの数を含む重要な側面にも着手しました。
チーム構成は、予測が難しいさまざまな要因によって、時間とともに変化するため、この入力をユーザから受け取り、プレーヤの埋め込みを使用して、与えられたチーム構成と可能な限りのチーム組み合わせを決定します。
関連論文リスト
- Transformer Guided Coevolution: Improved Team Formation in Multiagent Adversarial Games [1.2338485391170533]
そこで本稿では,Masked Language Modelトレーニングを用いたトランスフォーマーに基づくディープニューラルネットワークを用いて,トレーニング対象者の最適なチームを選択するアルゴリズムを提案する。
我々は,マルチエージェント対逆ゲーム「Marine Capture-The-Flag」で本アルゴリズムを検証した結果,BERTeam が非自明なチーム構成を学習し,見知らぬ相手に対して良好に動作していることが判明した。
論文 参考訳(メタデータ) (2024-10-17T17:06:41Z) - Multi-agent Multi-armed Bandits with Stochastic Sharable Arm Capacities [69.34646544774161]
我々は、各アームへのリクエストの到着とプレイヤーへのリクエストの割り当てポリシーをキャプチャするマルチプレイヤーマルチアーム・バンディット(MAB)モデルの新しいバリエーションを定式化する。
課題は、プレイヤーが最適な腕引きプロファイルに従って腕を選択するように分散学習アルゴリズムを設計する方法である。
我々は,Mラウンドのみの最適腕引きプロファイルにおいて,プレイヤーがコンセンサスに達することを保証した反復分散アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-08-20T13:57:00Z) - All by Myself: Learning Individualized Competitive Behaviour with a
Contrastive Reinforcement Learning optimization [57.615269148301515]
競争ゲームのシナリオでは、エージェントのセットは、彼らの目標を最大化し、敵の目標を同時に最小化する決定を学習する必要があります。
本稿では,競争ゲームの表現を学習し,特定の相手の戦略をどうマップするか,それらを破壊するかを学習する3つのニューラルネットワーク層からなる新しいモデルを提案する。
我々の実験は、オフライン、オンライン、競争特化モデル、特に同じ対戦相手と複数回対戦した場合に、我々のモデルがより良いパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2023-10-02T08:11:07Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - Transfer Portal: Accurately Forecasting the Impact of a Player Transfer
in Soccer [0.0]
異なるリーグ間で転送される場合、将来のプレイヤーのパフォーマンスを予測することは複雑な作業である。
本稿では,これらの問題に対処し,今後の性能を正確に予測する手法を提案する。
我々のTransfer Portalモデルは、プレイヤー、チーム、リーグのスタイリスティックなレベルの入力表現と能力レベルの入力表現の両方にパーソナライズされたニューラルネットワークを使用して、選択されたクラブの選手のパフォーマンスをシミュレートする。
論文 参考訳(メタデータ) (2022-01-27T14:15:09Z) - Offsetting Unequal Competition through RL-assisted Incentive Schemes [18.57907480363166]
本稿では,不平等な専門知識を持つ組織間の競争のダイナミクスについて検討する。
We design Touch-Mark, a game based on well-known multi-agent- Particle-environment。
論文 参考訳(メタデータ) (2022-01-05T04:47:22Z) - Evaluating Team Skill Aggregation in Online Competitive Games [4.168733556014873]
本稿では,2つの新しい集計手法が評価システムの予測性能に与える影響について分析する。
以上の結果から,テストケースの大部分において,MAX法が他の2手法よりも優れていることが示された。
本研究の結果は,チームのパフォーマンスを計算するために,より精巧な手法を考案する必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2021-06-21T20:17:36Z) - Coach-Player Multi-Agent Reinforcement Learning for Dynamic Team
Composition [88.26752130107259]
現実世界のマルチエージェントシステムでは、異なる能力を持つエージェントがチーム全体の目標を変更することなく参加または離脱する可能性がある。
この問題に取り組むコーチ・プレイヤー・フレームワーク「COPA」を提案します。
1)コーチと選手の両方の注意メカニズムを採用し、2)学習を正規化するための変動目標を提案し、3)コーチが選手とのコミュニケーションのタイミングを決定するための適応的なコミュニケーション方法を設計する。
論文 参考訳(メタデータ) (2021-05-18T17:27:37Z) - My Team Will Go On: Differentiating High and Low Viability Teams through
Team Interaction [17.729317295204368]
オンラインチームの669の10分間のテキスト会話のデータセット上で、生存可能性分類モデルをトレーニングする。
その結果,ラッソ回帰モデルにより,可視性スコアの分類のしきい値が異なる.74--.92 AUC ROCの精度が得られることがわかった。
論文 参考訳(メタデータ) (2020-10-14T21:33:36Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
我々は,不完全情報ゼロサム拡張形式ゲームにおいて,対戦相手と対決する2人の選手のチームにとって最適な戦略を見つけることの課題に焦点をあてる。
この設定では、チームができる最善のことは、ゲーム開始時の関節(つまり相関した)確率分布から潜在的にランダム化された戦略(プレイヤー1人)のプロファイルをサンプリングすることである。
各プロファイルにランダム化されるのはチームメンバーの1人だけであるプロファイルのみを用いることで、そのような最適な分布を計算するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-21T17:51:57Z) - Evaluating and Rewarding Teamwork Using Cooperative Game Abstractions [103.3630903577951]
我々は、協調ゲーム理論を用いて、プロスポーツから、人工RLエージェントのチームと現実世界のチームを研究する。
データからCFを推定するための協調ゲーム抽象化(CGA)と呼ばれるパラメトリックモデルを導入する。
CGAモデルに対する識別結果とサンプル境界の複雑さと、CGAを用いたShapley値の推定における誤差境界を提供する。
論文 参考訳(メタデータ) (2020-06-16T22:03:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。