論文の概要: Transfer Learning improves MI BCI models classification accuracy in
Parkinson's disease patients
- arxiv url: http://arxiv.org/abs/2010.15899v1
- Date: Thu, 29 Oct 2020 19:28:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 23:45:57.900644
- Title: Transfer Learning improves MI BCI models classification accuracy in
Parkinson's disease patients
- Title(参考訳): トランスファーラーニングによるパーキンソン病患者のMI BCIモデルの分類精度の改善
- Authors: Aleksandar Miladinovi\'c, Milo\v{s} Aj\v{c}evi\'c, Pierpaolo Busan,
Joanna Jarmolowska, Giulia Silveri, Susanna Mezzarobba, Piero Paolo
Battaglini, Agostino Accardo
- Abstract要約: 運動運動に基づくBCI(MIBCI)は、パーキンソン病患者の能力向上と障害症状の軽減を可能にする。
精度と時間関連キャリブレーションの課題を克服するためには、高度なMotor Imagery BCI法が必要である。
本研究は, PD患者に対するMI BCIの精度向上を目的とした, 転写学習に基づくFBCSPアプローチを提案する。
- 参考スコア(独自算出の注目度): 50.591267188664666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motor-Imagery based BCI (MI-BCI) neurorehabilitation can improve locomotor
ability and reduce the deficit symptoms in Parkinson's Disease patients.
Advanced Motor-Imagery BCI methods are needed to overcome the accuracy and
time-related MI BCI calibration challenges in such patients. In this study, we
proposed a Multi-session FBCSP (msFBCSP) based on inter-session transfer
learning and we investigated its performance compared to the single-session
based FBSCP. The main result of this study is the significantly improved
accuracy obtained by proposed msFBCSP compared to single-session FBCSP in PD
patients (median 81.3%, range 41.2-100.0% vs median 61.1%, range 25.0-100.0%,
respectively; p<0.001). In conclusion, this study proposes a transfer
learning-based multi-session based FBCSP approach which allowed to
significantly improve calibration accuracy in MI BCI performed on PD patients.
- Abstract(参考訳): 運動画像に基づくBCI(MI-BCI)神経リハビリテーションは、パーキンソン病患者の運動能力を改善し、障害症状を低減することができる。
このような患者の精度と時間的MI BCIキャリブレーションの課題を克服するために、高度な運動画像BCI法が必要である。
本研究では,セッション間移動学習に基づくマルチセッションFBCSP(msFBCSP)を提案し,その性能をシングルセッションFBSCPと比較した。
本研究の主な成果は, PD患者のシングルセッションFBCSPと比較してmsFBCSPの精度が有意に向上したことである(中値81.3%, 41.2-100.0%, 中値61.1%, 25.0-100.0%, p<0.001)。
そこで本研究では, PD患者に対するMI BCIの校正精度を大幅に向上させる, トランスファーラーニングに基づくマルチセッションベースFBCSPアプローチを提案する。
関連論文リスト
- Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
外傷性脳損傷(TBI)患者の呼吸器関連肺炎(VAP)は重大な死亡リスクをもたらす。
TBI患者のVAPのタイムリーな検出と予後は、患者の予後を改善し、医療資源の負担を軽減するために重要である。
我々はMIMIC-IIIデータベースを用いて6つの機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-08-02T09:44:18Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
本研究の目的は、心拍変動(HRV)機能を用いて、敗血症検出のための効果的な予測モデルを開発することである。
ニューラルネットワークモデルは、HRVの特徴に基づいてトレーニングされ、F1スコアは0.805、精度は0.851、リコールは0.763である。
論文 参考訳(メタデータ) (2024-08-01T01:47:29Z) - Advanced Predictive Modeling for Enhanced Mortality Prediction in ICU Stroke Patients Using Clinical Data [0.0]
ストロークは成人の障害と死亡の第二の要因である。
毎年1700万人が脳卒中を患っており、約85%が虚血性脳卒中である。
我々は、死亡リスクを評価するためのディープラーニングモデルを開発し、比較のためにいくつかのベースライン機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-07-19T11:17:42Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H\&E stained images [42.771819949806655]
CIMIL-CRCは、事前学習した特徴抽出モデルと主成分分析(PCA)を効率よく組み合わせ、全てのパッチから情報を集約することで、MSI/MSS MIL問題を解決するフレームワークである。
我々は,TCGA-CRC-DXコホートを用いたモデル開発のための5倍のクロスバリデーション実験装置を用いて,曲線下平均面積(AUC)を用いてCIMIL-CRC法の評価を行った。
論文 参考訳(メタデータ) (2024-01-29T12:56:11Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
本研究は早期疾患予測の手段として, PD患者の声質変化の可能性について検討した。
XGBoost、LightGBM、Baging、AdaBoost、Support Vector Machineなど、さまざまな高度な機械学習アルゴリズムを活用する。
LightGBMは、100%の感度と94.43%の特異性を示し、他の機械学習アルゴリズムの精度とAUCスコアを上回った。
論文 参考訳(メタデータ) (2023-11-09T15:21:10Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
運動画像に基づく脳-コンピュータインタフェース(MI-BCI)は、神経リハビリテーションのための画期的な技術になる可能性がある。
使用する脳波信号のノイズの性質のため、信頼性の高いBCIシステムは特徴の最適化と抽出のために特別な手順を必要とする。
論文 参考訳(メタデータ) (2020-10-13T20:50:13Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。