Graph Neural Network for Metal Organic Framework Potential Energy
Approximation
- URL: http://arxiv.org/abs/2010.15908v1
- Date: Thu, 29 Oct 2020 19:47:44 GMT
- Title: Graph Neural Network for Metal Organic Framework Potential Energy
Approximation
- Authors: Shehtab Zaman, Christopher Owen, Kenneth Chiu, Michael Lawler
- Abstract summary: Metal-organic frameworks (MOFs) are nanoporous compounds composed of metal ions and organic linkers.
We propose a machine learning approach for estimating potential energy of candidate MOFs using a graph neural network.
We generate a database of 50,000 spatial configurations and high-quality potential energy values using DFT.
- Score: 0.4588028371034407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metal-organic frameworks (MOFs) are nanoporous compounds composed of metal
ions and organic linkers. MOFs play an important role in industrial
applications such as gas separation, gas purification, and electrolytic
catalysis. Important MOF properties such as potential energy are currently
computed via techniques such as density functional theory (DFT). Although DFT
provides accurate results, it is computationally costly. We propose a machine
learning approach for estimating the potential energy of candidate MOFs,
decomposing it into separate pair-wise atomic interactions using a graph neural
network. Such a technique will allow high-throughput screening of candidates
MOFs. We also generate a database of 50,000 spatial configurations and
high-quality potential energy values using DFT.
Related papers
- CHGNet: Pretrained universal neural network potential for
charge-informed atomistic modeling [0.6860131654491484]
We present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP)
CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory dataset.
We provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.
arXiv Detail & Related papers (2023-02-28T01:30:06Z) - Energy Transformer [64.22957136952725]
Our work combines aspects of three promising paradigms in machine learning, namely, attention mechanism, energy-based models, and associative memory.
We propose a novel architecture, called the Energy Transformer (or ET for short), that uses a sequence of attention layers that are purposely designed to minimize a specifically engineered energy function.
arXiv Detail & Related papers (2023-02-14T18:51:22Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
We propose a novel Transformer architecture that takes nodes (atoms) and edges (bonds and nonbonding atom pairs) as inputs and models the interactions among them.
Moleformer achieves state-of-the-art on the initial state to relaxed energy prediction of OC20 and is very competitive in QM9 on predicting quantum chemical properties.
arXiv Detail & Related papers (2023-02-02T03:49:57Z) - Learned Force Fields Are Ready For Ground State Catalyst Discovery [60.41853574951094]
We present evidence that learned density functional theory (DFT'') force fields are ready for ground state catalyst discovery.
Key finding is that relaxation using forces from a learned potential yields structures with similar or lower energy to those relaxed using the RPBE functional in over 50% of evaluated systems.
We show that a force field trained on a locally harmonic energy surface with the same minima as a target DFT energy is also able to find lower or similar energy structures in over 50% of cases.
arXiv Detail & Related papers (2022-09-26T07:16:43Z) - NeuralNEB -- Neural Networks can find Reaction Paths Fast [7.7365628406567675]
Quantum mechanical methods like Density Functional Theory (DFT) are used with great success alongside efficient search algorithms for studying kinetics of reactive systems.
Machine Learning (ML) models have turned out to be excellent emulators of small molecule DFT calculations and could possibly replace DFT in such tasks.
In this paper we train state of the art equivariant Graph Neural Network (GNN)-based models on around 10.000 elementary reactions from the Transition1x dataset.
arXiv Detail & Related papers (2022-07-20T15:29:45Z) - Building Open Knowledge Graph for Metal-Organic Frameworks (MOF-KG):
Challenges and Case Studies [63.61566811532431]
Metal-Organic Frameworks (MOFs) have great potential to revolutionize applications such as gas storage, molecular separations, chemical sensing, crystalline and drug delivery.
The Cambridge Structural Database (CSD) reports 10,636 synthesized MOF crystals which in addition contains ca. 114,373 MOF-like structures.
In this demo paper, we describe our effort on leveraging knowledge graph methods to facilitate MOF prediction, discovery, and synthesis.
arXiv Detail & Related papers (2022-07-10T16:41:11Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
Reactive force fields based on physics or machine learning can be used to bridge the gap in time and length scales.
We introduce the Gaussian multi-pole (GMP) featurization scheme that utilizes physically-relevant multi-pole expansions of the electron density around atoms.
We demonstrate that GMP-based models can achieve chemical accuracy for the QM9 dataset, and their accuracy remains reasonable even when extrapolating to new elements.
arXiv Detail & Related papers (2021-02-04T03:11:00Z) - Accelerating Finite-temperature Kohn-Sham Density Functional Theory with
Deep Neural Networks [2.7035666571881856]
We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature.
Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration.
We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum.
arXiv Detail & Related papers (2020-10-10T05:38:03Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.