論文の概要: Goal directed molecule generation using Monte Carlo Tree Search
- arxiv url: http://arxiv.org/abs/2010.16399v2
- Date: Fri, 11 Dec 2020 17:56:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 16:09:08.465267
- Title: Goal directed molecule generation using Monte Carlo Tree Search
- Title(参考訳): モンテカルロ木探索によるゴール指向分子生成
- Authors: Anand A. Rajasekar, Karthik Raman, Balaraman Ravindran
- Abstract要約: 我々は,モンテカルロ木探索を用いて,各ステップで分子を単位変化させることにより分子生成を行う,ユニットMCTSと呼ばれる新しい手法を提案する。
本手法は,最近発表されたQEDやopalized logPといったベンチマーク分子最適化の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 15.462930062711237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One challenging and essential task in biochemistry is the generation of novel
molecules with desired properties. Novel molecule generation remains a
challenge since the molecule space is difficult to navigate through, and the
generated molecules should obey the rules of chemical valency. Through this
work, we propose a novel method, which we call unitMCTS, to perform molecule
generation by making a unit change to the molecule at every step using Monte
Carlo Tree Search. We show that this method outperforms the recently published
techniques on benchmark molecular optimization tasks such as QED and penalized
logP. We also demonstrate the usefulness of this method in improving molecule
properties while being similar to the starting molecule. Given that there is no
learning involved, our method finds desired molecules within a shorter amount
of time.
- Abstract(参考訳): 生化学における難しい重要な課題は、望ましい性質を持つ新規分子の生成である。
分子空間の通過が困難であり、生成分子は化学価の規則に従う必要があるため、新しい分子生成は依然として困難である。
本研究では,モンテカルロ木探索を用いて各ステップで分子単位の変更を行い,分子生成を行う新しい手法である unitmcts を提案する。
本手法はqedやペナライズドlogpなどのベンチマーク分子最適化タスクにおいて最近発表された手法よりも優れていることを示す。
また,本手法が開始分子に類似した分子特性の向上に有用であることを示す。
学習が関与していないことを考慮し、より短い時間内に所望の分子を探索する。
関連論文リスト
- Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model [55.87790704067848]
Mol-LLaMAは、分子を中心とした一般的な知識をマルチモーダル命令チューニングによって把握する大規模な分子言語モデルである。
分子の特徴の理解を深めるために,異なる分子エンコーダの相補的な情報を統合するモジュールを導入する。
論文 参考訳(メタデータ) (2025-02-19T05:49:10Z) - Context-enriched molecule representations improve few-shot drug
discovery [8.379853456273674]
数発の薬物発見のための新しい方法を提案する。
私たちの基本的な考え方は、既知のコンテキストや参照分子に関する知識によって分子表現を豊かにすることです。
本手法は,FS-Molベンチマークデータセットにおいて,薬物発見のためのいくつかの方法と比較した。
論文 参考訳(メタデータ) (2023-04-24T17:58:05Z) - De Novo Molecular Generation via Connection-aware Motif Mining [197.97528902698966]
我々は、マイニングされた接続認識モチーフに基づいて分子を生成する新しい方法、MiCaMを提案する。
得られたモチーフ語彙は、分子モチーフ(頻繁な断片)だけでなく、それらの接続情報も含む。
マイニングされた接続対応モチーフに基づいて、MiCaMは接続対応ジェネレータを構築し、同時にモチーフをピックアップし、どのように接続されているかを決定する。
論文 参考訳(メタデータ) (2023-02-02T14:40:47Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGenは、分子生成に特化した事前訓練された分子言語モデルである。
1億以上の分子SELFIESを再構成することで構造的および文法的な洞察を内部化する。
我々の化学フィードバックパラダイムは、モデルを分子幻覚から遠ざけ、モデルの推定確率と実世界の化学的嗜好との整合性を確保する。
論文 参考訳(メタデータ) (2023-01-26T17:52:56Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
分子構築に階層的エージェントを用いるスケーラブルな3D設計のための新しいフレームワークを提案する。
様々な実験において、エネルギーのみを考慮に入れたエージェントが、100以上の原子を持つ分子を効率よく生成できることが示されている。
論文 参考訳(メタデータ) (2022-02-01T18:54:24Z) - Fragment-based Sequential Translation for Molecular Optimization [23.152338167332374]
本稿では,分子断片を用いた分子生成のためのフレキシブルな編集パラダイムを提案する。
我々は変分オートエンコーダを用いて分子断片をコヒーレント潜在空間に符号化する。
そして、分子を編集して複雑な化学特性空間を探索する語彙として利用します。
論文 参考訳(メタデータ) (2021-10-26T21:20:54Z) - Barking up the right tree: an approach to search over molecule synthesis
DAGs [28.13323960125482]
現在の分子の深層生成モデルは合成可能性を無視している。
我々は,現実世界のプロセスをよりよく表現する深い生成モデルを提案する。
我々のアプローチは化学空間をうまくモデル化でき、幅広い多様な分子を生成できることを示します。
論文 参考訳(メタデータ) (2020-12-21T17:35:06Z) - Reinforced Molecular Optimization with Neighborhood-Controlled Grammars [63.84003497770347]
分子最適化のためのグラフ畳み込みポリシネットワークであるMNCE-RLを提案する。
我々は、元の近傍制御された埋め込み文法を拡張して、分子グラフ生成に適用する。
提案手法は, 分子最適化タスクの多種多様さにおいて, 最先端性能を実現する。
論文 参考訳(メタデータ) (2020-11-14T05:42:15Z) - Learning Latent Space Energy-Based Prior Model for Molecule Generation [59.875533935578375]
分子モデリングのためのSMILES表現を用いた潜時空間エネルギーに基づく先行モデルについて学習する。
本手法は,最先端モデルと競合する妥当性と特異性を持つ分子を生成することができる。
論文 参考訳(メタデータ) (2020-10-19T09:34:20Z) - Reinforcement Learning for Molecular Design Guided by Quantum Mechanics [10.112779201155005]
分子設計のための新しいRL式を座標で提示し、構築可能な分子のクラスを拡張した。
我々の報酬関数は、高速量子化学法で近似したエネルギーのような基本的な物理的性質に基づいている。
本実験では, 翻訳および回転不変状態-作用空間で作業することで, エージェントがスクラッチからこれらの課題を効率的に解けることを示す。
論文 参考訳(メタデータ) (2020-02-18T16:43:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。