The power of quantum neural networks
- URL: http://arxiv.org/abs/2011.00027v1
- Date: Fri, 30 Oct 2020 18:13:32 GMT
- Title: The power of quantum neural networks
- Authors: Amira Abbas, David Sutter, Christa Zoufal, Aur\'elien Lucchi, Alessio
Figalli, Stefan Woerner
- Abstract summary: In the near-term, however, the benefits of quantum machine learning are not so clear.
We use tools from information geometry to define a notion of expressibility for quantum and classical models.
We show that quantum neural networks are able to achieve a significantly better effective dimension than comparable classical neural networks.
- Score: 3.327474729829121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault-tolerant quantum computers offer the promise of dramatically improving
machine learning through speed-ups in computation or improved model
scalability. In the near-term, however, the benefits of quantum machine
learning are not so clear. Understanding expressibility and trainability of
quantum models-and quantum neural networks in particular-requires further
investigation. In this work, we use tools from information geometry to define a
notion of expressibility for quantum and classical models. The effective
dimension, which depends on the Fisher information, is used to prove a novel
generalisation bound and establish a robust measure of expressibility. We show
that quantum neural networks are able to achieve a significantly better
effective dimension than comparable classical neural networks. To then assess
the trainability of quantum models, we connect the Fisher information spectrum
to barren plateaus, the problem of vanishing gradients. Importantly, certain
quantum neural networks can show resilience to this phenomenon and train faster
than classical models due to their favourable optimisation landscapes, captured
by a more evenly spread Fisher information spectrum. Our work is the first to
demonstrate that well-designed quantum neural networks offer an advantage over
classical neural networks through a higher effective dimension and faster
training ability, which we verify on real quantum hardware.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Training-efficient density quantum machine learning [2.918930150557355]
Quantum machine learning requires powerful, flexible and efficiently trainable models.
We present density quantum neural networks, a learning model incorporating randomisation over a set of trainable unitaries.
arXiv Detail & Related papers (2024-05-30T16:40:28Z) - A Quick Introduction to Quantum Machine Learning for Non-Practitioners [0.0]
The paper covers basic quantum mechanics principles, including superposition, phase space, and entanglement.
It also reviews classical deep learning concepts, such as artificial neural networks, gradient descent, and backpropagation.
An example problem demonstrates the potential advantages of quantum neural networks.
arXiv Detail & Related papers (2024-02-22T16:48:17Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
We propose a new quantum neural network model for quantum neural computing.
Our model circumvents the problem that the state-space size grows exponentially with the number of neurons.
We benchmark our model for handwritten digit recognition and other nonlinear classification tasks.
arXiv Detail & Related papers (2023-05-15T11:16:47Z) - An Invitation to Distributed Quantum Neural Networks [0.0]
We review the current state of the art in distributed quantum neural networks.
We find that the distribution of quantum datasets shares more similarities with its classical counterpart than does the distribution of quantum models.
arXiv Detail & Related papers (2022-11-14T00:27:01Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.