Transforming Traditional Neural Networks into Neuromorphic Quantum-Cognitive Models: A Tutorial with Applications
- URL: http://arxiv.org/abs/2503.07681v1
- Date: Mon, 10 Mar 2025 11:00:48 GMT
- Title: Transforming Traditional Neural Networks into Neuromorphic Quantum-Cognitive Models: A Tutorial with Applications
- Authors: Milan Maksimovic, Ivan S. Maksymov,
- Abstract summary: This paper demonstrates how traditional neural networks can be transformed into neuromorphic quantum models.<n>We present several examples of these quantum machine learning transformations and explore their potential applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum technologies are increasingly pervasive, underpinning the operation of numerous electronic, optical and medical devices. Today, we are also witnessing rapid advancements in quantum computing and communication. However, access to quantum technologies in computation remains largely limited to professionals in research organisations and high-tech industries. This paper demonstrates how traditional neural networks can be transformed into neuromorphic quantum models, enabling anyone with a basic understanding of undergraduate-level machine learning to create quantum-inspired models that mimic the functioning of the human brain -- all using a standard laptop. We present several examples of these quantum machine learning transformations and explore their potential applications, aiming to make quantum technology more accessible and practical for broader use. The examples discussed in this paper include quantum-inspired analogues of feedforward neural networks, recurrent neural networks, Echo State Network reservoir computing and Bayesian neural networks, demonstrating that a quantum approach can both optimise the training process and equip the models with certain human-like cognitive characteristics.
Related papers
- Neural networks with quantum states of light [2.621434923709917]
Photonic artificial neural networks offer the opportunity to exploit the advantages of both classical and quantum optics.
Photonic neuro-inspired computation and machine learning have been successfully demonstrated in classical settings.
Quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing.
arXiv Detail & Related papers (2024-10-23T09:23:49Z) - Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - An Invitation to Distributed Quantum Neural Networks [0.0]
We review the current state of the art in distributed quantum neural networks.
We find that the distribution of quantum datasets shares more similarities with its classical counterpart than does the distribution of quantum models.
arXiv Detail & Related papers (2022-11-14T00:27:01Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Neural Network Classifiers: A Tutorial [1.4567067583556714]
We focus on quantum neural networks in the form of parameterized quantum circuits.
We will mainly discuss different structures and encoding strategies of quantum neural networks for supervised learning tasks.
benchmark their performance utilizing Yao.jl, a quantum simulation package written in Julia Language.
arXiv Detail & Related papers (2022-06-06T18:00:01Z) - Quantum neural networks force fields generation [0.0]
We design a quantum neural network architecture and apply it successfully to different molecules of growing complexity.
The quantum models exhibit larger effective dimension with respect to classical counterparts and can reach competitive performances.
arXiv Detail & Related papers (2022-03-09T12:10:09Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.