論文の概要: ComFace: Facial Representation Learning with Synthetic Data for Comparing Faces
- arxiv url: http://arxiv.org/abs/2405.16016v1
- Date: Sat, 25 May 2024 02:44:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 01:29:38.775562
- Title: ComFace: Facial Representation Learning with Synthetic Data for Comparing Faces
- Title(参考訳): ComFace:顔比較のための合成データを用いた顔表現学習
- Authors: Yusuke Akamatsu, Terumi Umematsu, Hitoshi Imaoka, Shizuko Gomi, Hideo Tsurushima,
- Abstract要約: 合成画像を用いた顔表現学習手法ComFaceを提案する。
効果的な表現学習のために、ComFaceは2つの特徴表現、すなわち、対人的な顔の違いと対人的な顔の変化を取得することを目指している。
我々のComFaceは、合成データのみを用いて訓練され、実画像を用いて訓練された一般的な事前学習や最先端表現学習方法と同等以上の転送性能を達成する。
- 参考スコア(独自算出の注目度): 5.07975834105566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Daily monitoring of intra-personal facial changes associated with health and emotional conditions has great potential to be useful for medical, healthcare, and emotion recognition fields. However, the approach for capturing intra-personal facial changes is relatively unexplored due to the difficulty of collecting temporally changing face images. In this paper, we propose a facial representation learning method using synthetic images for comparing faces, called ComFace, which is designed to capture intra-personal facial changes. For effective representation learning, ComFace aims to acquire two feature representations, i.e., inter-personal facial differences and intra-personal facial changes. The key point of our method is the use of synthetic face images to overcome the limitations of collecting real intra-personal face images. Facial representations learned by ComFace are transferred to three extensive downstream tasks for comparing faces: estimating facial expression changes, weight changes, and age changes from two face images of the same individual. Our ComFace, trained using only synthetic data, achieves comparable to or better transfer performance than general pre-training and state-of-the-art representation learning methods trained using real images.
- Abstract(参考訳): 健康状態や感情状態に関連する顔変化の日常的モニタリングは、医療、医療、感情認識の分野で有用である可能性がある。
しかし, 顔画像の時間的変化の収集が困難であるため, 顔内変化を捉えるアプローチは, 比較的未探索である。
本稿では,合成画像を用いた顔表現学習手法ComFaceを提案する。
効果的な表現学習のために、ComFaceは2つの特徴表現、すなわち、対人的な顔の違いと対人的な顔の変化を取得することを目指している。
提案手法の要点は,実際の顔画像収集の限界を克服するために合成顔画像を使用することである。
ComFaceが学んだ顔表現は、顔の表情変化の推定、体重の変化、同一人物の2つの顔画像からの年齢変化の3つの広範囲な下流タスクに転送される。
我々のComFaceは、合成データのみを用いて訓練され、実画像を用いて訓練された一般的な事前学習や最先端表現学習方法と同等以上の転送性能を達成する。
関連論文リスト
- A Generalist FaceX via Learning Unified Facial Representation [77.74407008931486]
FaceXは、多様な顔タスクを同時に処理できる新しい顔ジェネラリストモデルである。
汎用的なFaceXは、一般的な顔編集タスクの精巧なタスク特化モデルと比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2023-12-31T17:41:48Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
我々はこれらの課題に対処するため,ポーカー・フェイス・ビジョン・トランスフォーマー (PF-ViT) と呼ばれる新しいFERモデルを提案する。
PF-ViTは、対応するポーカーフェースを生成して、乱れを認識できない感情を静的な顔画像から分離し、認識することを目的としている。
PF-ViTはバニラビジョントランスフォーマーを使用し、そのコンポーネントは大規模な表情データセット上でMasked Autoencodeerとして事前トレーニングされている。
論文 参考訳(メタデータ) (2022-07-22T13:39:06Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - Learning Facial Representations from the Cycle-consistency of Face [23.23272327438177]
顔特徴の周期一貫性を自由監督信号として導入し、ラベルのない顔画像から顔の表情を学習する。
この学習は、顔の動きサイクルの制約とアイデンティティのサイクルの制約を重畳することによって実現される。
我々のアプローチは既存の手法と競合し、アンタングル表現に埋め込まれたリッチでユニークな情報を実証する。
論文 参考訳(メタデータ) (2021-08-07T11:30:35Z) - I Only Have Eyes for You: The Impact of Masks On Convolutional-Based
Facial Expression Recognition [78.07239208222599]
今回提案したFaceChannelがマスクを持つ人からの表情認識にどのように適応するかを評価します。
また、制約された社会的相互作用シナリオにおける顔の特徴の変化を学習し、組み合わせるためのFaceChannelの本質的な能力を示すために、特定の機能レベルの可視化も行います。
論文 参考訳(メタデータ) (2021-04-16T20:03:30Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
本研究では,顔認識システムのセキュリティ脆弱性としての表情バイアスについて検討する。
本稿では,表情バイアスが顔認識技術の性能に与える影響を包括的に分析する。
論文 参考訳(メタデータ) (2020-11-17T18:12:41Z) - LandmarkGAN: Synthesizing Faces from Landmarks [43.53204737135101]
顔のランドマークに基づいた顔合成を入力として行う新しい手法であるLandmarkGANについて述べる。
提案手法では,顔のランドマークの集合を異なる対象の新たな顔に変換することができるが,顔の表情や向きは同一である。
論文 参考訳(メタデータ) (2020-10-31T13:27:21Z) - Learning Inverse Rendering of Faces from Real-world Videos [52.313931830408386]
既存の方法は、顔画像を3つの構成要素(アルベド、ノーマル、照明)に分解する。
本稿では,アルベドと正常の整合性の仮定に基づいて,我々のモデルを実顔ビデオでトレーニングするための弱い教師付きトレーニング手法を提案する。
私たちのネットワークは、実データと合成データの両方で訓練されています。
論文 参考訳(メタデータ) (2020-03-26T17:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。