論文の概要: Beelines: Motion Prediction Metrics for Self-Driving Safety and Comfort
- arxiv url: http://arxiv.org/abs/2011.00393v2
- Date: Sun, 18 Apr 2021 15:56:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 23:37:31.571923
- Title: Beelines: Motion Prediction Metrics for Self-Driving Safety and Comfort
- Title(参考訳): ビーライン:自動運転と快適性のための運動予測指標
- Authors: Skanda Shridhar, Yuhang Ma, Tara Stentz, Zhengdi Shen, Galen Clark
Haynes, Neil Traft
- Abstract要約: 動作予測が安全性に与える影響を定量化する2つの相補的指標を提案する。
我々の安全基準は、安全でない事象を特定する際の変位誤差よりもはるかに優れた信号対雑音比を有する。
- 参考スコア(独自算出の注目度): 4.670814682436471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The commonly used metrics for motion prediction do not correlate well with a
self-driving vehicle's system-level performance. The most common metrics are
average displacement error (ADE) and final displacement error (FDE), which omit
many features, making them poor self-driving performance indicators. Since
high-fidelity simulations and track testing can be resource-intensive, the use
of prediction metrics better correlated with full-system behavior allows for
swifter iteration cycles. In this paper, we offer a conceptual framework for
prediction evaluation highly specific to self-driving. We propose two
complementary metrics that quantify the effects of motion prediction on safety
(related to recall) and comfort (related to precision). Using a simulator, we
demonstrate that our safety metric has a significantly better signal-to-noise
ratio than displacement error in identifying unsafe events.
- Abstract(参考訳): 運動予測の一般的なメトリクスは、自動運転車のシステムレベルの性能とよく相関しない。
最も一般的な測定基準は平均変位誤差(ADE)と最終変位誤差(FDE)であり、多くの特徴を省略し、自動運転性能指標が劣っている。
高忠実度シミュレーションとトラックテストはリソース集約型であるため、予測指標の使用とフルシステム動作との相関が良くなるため、迅速な反復サイクルが可能になる。
本稿では,自動運転に特有な予測評価のための概念的枠組みを提案する。
本稿では,動作予測が安全(リコール)と快適(精度)に与える影響を定量化する2つの相補的指標を提案する。
シミュレータを用いて,安全度指標は,安全でない事象の同定において,変位誤差よりも信号対雑音比が有意に優れていることを実証する。
関連論文リスト
- Situation Awareness for Driver-Centric Driving Style Adaptation [3.568617847600189]
本稿では,車両データに基づいて事前学習した視覚特徴エンコーダに基づく状況認識型運転スタイルモデルを提案する。
実験の結果,提案手法は静的な運転スタイルを著しく上回り,高い状況クラスタを形成していることがわかった。
論文 参考訳(メタデータ) (2024-03-28T17:19:16Z) - Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
本研究では,混合密度ネットワーク(MDN)を組み合わせた軌道予測フレームワークを提案する。
提案するフレームワークは、広範囲の車両軌道データセットに基づいてテストされる。
論文 参考訳(メタデータ) (2023-12-19T12:56:56Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - Estimating Uncertainty For Vehicle Motion Prediction on Yandex Shifts
Dataset [0.0]
この研究は、分布シフトに頑健で、予測の不確実性を測定することのできるモデルの開発に焦点を当てている。
この作業では、ベンチマークを著しく改善し、リーダーボードで2位になったアプローチを提示します。
論文 参考訳(メタデータ) (2021-12-15T18:58:55Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Maneuver-based Anchor Trajectory Hypotheses at Roundabouts [3.5851903214591663]
人的データから学習することで、挑戦的なラウンドアバウト環境における車両の動き予測の問題に対処する。
ドライバーの意図は、セマンティクス駆動の概念に対応する一連の操作によって符号化される。
我々のモデルは、ラウンドアバウンドにおける可能な結果の空間をカバーする、一連の操作特異的なアンカー軌道を用いる。
論文 参考訳(メタデータ) (2021-04-22T17:08:29Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
本論文では,LiDARセンサが生成する3次元点群と,環境の動的なマップの両方を利用するワンステージ検出器と予測器を開発した。
当社のマルチタスクモデルは、それぞれの別々のモジュールよりも高い精度を実現し、計算を節約します。
論文 参考訳(メタデータ) (2021-01-20T00:31:52Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
システムレベルアプローチによる自動走行の歩行者行動予測の要件を分析した。
人間の運転行動に基づいて、自動走行車の適切な反応パターンを導出する。
複数の文脈的手がかりを組み込んだ変分条件自動エンコーダに基づく歩行者予測モデルを提案する。
論文 参考訳(メタデータ) (2020-12-15T16:52:49Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。