論文の概要: Estimating Uncertainty For Vehicle Motion Prediction on Yandex Shifts
Dataset
- arxiv url: http://arxiv.org/abs/2112.08355v1
- Date: Wed, 15 Dec 2021 18:58:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-16 13:58:28.134041
- Title: Estimating Uncertainty For Vehicle Motion Prediction on Yandex Shifts
Dataset
- Title(参考訳): ヤンデックスシフトデータセットを用いた車両運動予測の不確かさの推定
- Authors: Alexey Pustynnikov, Dmitry Eremeev
- Abstract要約: この研究は、分布シフトに頑健で、予測の不確実性を測定することのできるモデルの開発に焦点を当てている。
この作業では、ベンチマークを著しく改善し、リーダーボードで2位になったアプローチを提示します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion prediction of surrounding agents is an important task in context of
autonomous driving since it is closely related to driver's safety. Vehicle
Motion Prediction (VMP) track of Shifts Challenge focuses on developing models
which are robust to distributional shift and able to measure uncertainty of
their predictions. In this work we present the approach that significantly
improved provided benchmark and took 2nd place on the leaderboard.
- Abstract(参考訳): 周囲のエージェントの運動予測は、運転者の安全と密接に関連しているため、自律運転における重要な課題である。
vehicle motion prediction (vmp) track of shifts challengeは、分散シフトに頑健で、予測の不確実性を測定することができるモデルの開発に焦点を当てている。
この作業では、ベンチマークを著しく改善し、リーダーボードで2位になったアプローチを提示します。
関連論文リスト
- Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
本研究では,混合密度ネットワーク(MDN)を組み合わせた軌道予測フレームワークを提案する。
提案するフレームワークは、広範囲の車両軌道データセットに基づいてテストされる。
論文 参考訳(メタデータ) (2023-12-19T12:56:56Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
我々は行動認識軌道予測モデル(BAT)を考案した。
我々のモデルは行動認識、相互作用認識、優先度認識、位置認識モジュールから構成される。
次世代シミュレーション(NGSIM)、ハイウェイドローン(HighD)、ラウンドアバウンドドローン(RounD)、マカオコネクテッド自律運転(MoCAD)データセットにおけるBATの性能を評価する。
論文 参考訳(メタデータ) (2023-12-11T13:27:51Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
動き TRansformer (MTR) は、大域的意図の局所化と局所的な動きの洗練の合同最適化として、動き予測をモデル化する。
MTRは、限界運動予測と関節運動予測の両方において最先端の性能を達成する。
論文 参考訳(メタデータ) (2022-09-27T16:23:14Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - Transformer based trajectory prediction [71.31516599226606]
我々は、トランスフォーマーニューラルネットワークを純粋にベースとした、不確実性を考慮した動き予測のための、単純かつ強力なベースラインを提案する。
実装が容易である一方で、提案手法は競争性能を達成し、2021年のシフト車両運動予測コンペティションで1$st$をランク付けする。
論文 参考訳(メタデータ) (2021-12-08T16:00:14Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Beelines: Motion Prediction Metrics for Self-Driving Safety and Comfort [4.670814682436471]
動作予測が安全性に与える影響を定量化する2つの相補的指標を提案する。
我々の安全基準は、安全でない事象を特定する際の変位誤差よりもはるかに優れた信号対雑音比を有する。
論文 参考訳(メタデータ) (2020-11-01T01:09:23Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。