論文の概要: Watermarking Graph Neural Networks by Random Graphs
- arxiv url: http://arxiv.org/abs/2011.00512v2
- Date: Thu, 1 Apr 2021 12:18:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 00:02:48.031537
- Title: Watermarking Graph Neural Networks by Random Graphs
- Title(参考訳): ランダムグラフによる透かしグラフニューラルネットワーク
- Authors: Xiangyu Zhao, Hanzhou Wu and Xinpeng Zhang
- Abstract要約: GNNモデルに透かしを施す動機となるGNNモデルの所有権を保護する必要がある。
提案手法では,ランダムなノード特徴ベクトルとラベルを持つエルドス・レニー(ER)ランダムグラフを,GNNを訓練するためのトリガとしてランダムに生成する。
モデル検証において、マークされたGNNをトリガーERグラフで活性化することにより、ウォーターマークを出力から再構成してオーナシップを検証することができる。
- 参考スコア(独自算出の注目度): 38.70278014164124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many learning tasks require us to deal with graph data which contains rich
relational information among elements, leading increasing graph neural network
(GNN) models to be deployed in industrial products for improving the quality of
service. However, they also raise challenges to model authentication. It is
necessary to protect the ownership of the GNN models, which motivates us to
present a watermarking method to GNN models in this paper. In the proposed
method, an Erdos-Renyi (ER) random graph with random node feature vectors and
labels is randomly generated as a trigger to train the GNN to be protected
together with the normal samples. During model training, the secret watermark
is embedded into the label predictions of the ER graph nodes. During model
verification, by activating a marked GNN with the trigger ER graph, the
watermark can be reconstructed from the output to verify the ownership. Since
the ER graph was randomly generated, by feeding it to a non-marked GNN, the
label predictions of the graph nodes are random, resulting in a low false alarm
rate (of the proposed work). Experimental results have also shown that, the
performance of a marked GNN on its original task will not be impaired.
Moreover, it is robust against model compression and fine-tuning, which has
shown the superiority and applicability.
- Abstract(参考訳): 多くの学習タスクでは、要素間のリッチリレーショナル情報を含むグラフデータを扱う必要があり、サービス品質を改善するために、産業製品にグラフニューラルネットワーク(GNN)モデルがデプロイされるようになる。
しかし、認証のモデルにも課題がある。
本稿では,GNNモデルに対する透かし手法を提案する動機となるGNNモデルの所有権を保護することが必要である。
提案手法では,ランダムなノード特徴ベクトルとラベルを持つエルドス・レニー(ER)ランダムグラフをランダムに生成し,GNNを通常のサンプルとともに保護するように訓練する。
モデルのトレーニング中に、秘密のウォーターマークがerグラフノードのラベル予測に埋め込まれる。
モデル検証において、マークされたGNNをトリガーERグラフで活性化することにより、ウォーターマークを出力から再構成してオーナシップを検証することができる。
ERグラフはランダムに生成され、非マーク付きGNNに入力することで、グラフノードのラベル予測がランダムになり、結果として(提案された作業の)偽アラームレートが低くなる。
実験の結果、元のタスクでマークされたGNNのパフォーマンスが損なわれることはないことが示された。
さらに,モデル圧縮や微調整に対して頑健であり,その優越性と適用性が示された。
関連論文リスト
- GENIE: Watermarking Graph Neural Networks for Link Prediction [5.1323099412421636]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを利用して機械学習の分野を進歩させた。
近年の研究では、GNNはモデルスティーリング攻撃に弱いことが示されている。
透かしはGNNモデルのIPを保護するのに有効であることが示されている。
論文 参考訳(メタデータ) (2024-06-07T10:12:01Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - GrOVe: Ownership Verification of Graph Neural Networks using Embeddings [13.28269672097063]
グラフニューラルネットワーク(GNN)は、大規模グラフ構造化データから推論をモデル化および描画するための最先端のアプローチとして登場した。
以前の研究によると、GNNは抽出攻撃をモデル化する傾向がある。
GrOVeは最先端のGNNモデルフィンガープリント方式である。
論文 参考訳(メタデータ) (2023-04-17T19:06:56Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Watermarking Graph Neural Networks based on Backdoor Attacks [10.844454900508566]
本稿では,グラフ分類タスクとノード分類タスクの両方に対して,グラフニューラルネットワーク(GNN)のための透かしフレームワークを提案する。
我々のフレームワークは、両方のタスクに対して非常に高い確率(約100ドル)でGNNモデルのオーナシップを検証することができる。
論文 参考訳(メタデータ) (2021-10-21T09:59:59Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。