論文の概要: GENIE: Watermarking Graph Neural Networks for Link Prediction
- arxiv url: http://arxiv.org/abs/2406.04805v1
- Date: Fri, 7 Jun 2024 10:12:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:40:28.900937
- Title: GENIE: Watermarking Graph Neural Networks for Link Prediction
- Title(参考訳): GENIE:リンク予測のための透かしグラフニューラルネットワーク
- Authors: Venkata Sai Pranav Bachina, Ankit Gangwal, Aaryan Ajay Sharma, Charu Sharma,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データを利用して機械学習の分野を進歩させた。
近年の研究では、GNNはモデルスティーリング攻撃に弱いことが示されている。
透かしはGNNモデルのIPを保護するのに有効であることが示されている。
- 参考スコア(独自算出の注目度): 5.1323099412421636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have advanced the field of machine learning by utilizing graph-structured data, which is ubiquitous in the real world. GNNs have applications in various fields, ranging from social network analysis to drug discovery. GNN training is strenuous, requiring significant computational resources and human expertise. It makes a trained GNN an indispensable Intellectual Property (IP) for its owner. Recent studies have shown GNNs to be vulnerable to model-stealing attacks, which raises concerns over IP rights protection. Watermarking has been shown to be effective at protecting the IP of a GNN model. Existing efforts to develop a watermarking scheme for GNNs have only focused on the node classification and the graph classification tasks. To the best of our knowledge, we introduce the first-ever watermarking scheme for GNNs tailored to the Link Prediction (LP) task. We call our proposed watermarking scheme GENIE (watermarking Graph nEural Networks for lInk prEdiction). We design GENIE using a novel backdoor attack to create a trigger set for two key methods of LP: (1) node representation-based and (2) subgraph-based. In GENIE, the watermark is embedded into the GNN model by training it on both the trigger set and a modified training set, resulting in a watermarked GNN model. To assess a suspect model, we verify the watermark against the trigger set. We extensively evaluate GENIE across 3 model architectures (i.e., SEAL, GCN, and GraphSAGE) and 7 real-world datasets. Furthermore, we validate the robustness of GENIE against 11 state-of-the-art watermark removal techniques and 3 model extraction attacks. We also demonstrate that GENIE is robust against ownership piracy attack. Our ownership demonstration scheme statistically guarantees both False Positive Rate (FPR) and False Negative Rate (FNR) to be less than $10^{-6}$.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データを利用して機械学習の分野を進歩させてきた。
GNNは、ソーシャルネットワーク分析から薬物発見まで、さまざまな分野で応用されている。
GNNトレーニングは熱心であり、計算資源と人間の専門知識を必要とする。
訓練されたGNNを所有者にとって必須の知的財産権(IP)にする。
近年の研究では、GNNがモデルステアリング攻撃に弱いことが示されており、IPの権利保護に対する懸念が高まっている。
透かしはGNNモデルのIPを保護するのに有効であることが示されている。
GNNのための透かし方式の開発は、ノード分類とグラフ分類タスクにのみ焦点が当てられている。
我々の知る限り、リンク予測(LP)タスクに適したGNNのための初めての透かし方式を導入する。
提案手法をGENIE (watermarking Graph nEural Networks for lInk prEdiction) と呼ぶ。
我々は,新しいバックドア攻撃を用いてGENIEを設計し,LPの2つのキーメソッドのトリガセットを作成する。
GENIEでは、ウォーターマークはトリガーセットと修正されたトレーニングセットの両方でトレーニングすることでGNNモデルに埋め込まれる。
被疑者モデルを評価するため, トリガーセットに対する透かしを検証した。
我々は3つのモデルアーキテクチャ(SEAL、GCN、GraphSAGE)と7つの実世界のデータセットにまたがってGENIEを広範囲に評価する。
さらに,11種類の透かし除去技術と3種類のモデル抽出攻撃に対するGENIEの堅牢性を検証する。
また、GENIEは所有権海賊行為に対して堅牢であることを示す。
我々の所有実証は、偽陽性率(FPR)と偽陰性率(FNR)の両方を統計的に10〜6ドル未満で保証する。
関連論文リスト
- Link Stealing Attacks Against Inductive Graph Neural Networks [60.931106032824275]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理するように設計されたニューラルネットワークの一種である。
これまでの研究によると、トランスダクティブGNNは一連のプライバシー攻撃に弱い。
本稿では,リンク盗難攻撃のレンズを通して,誘導型GNNの包括的プライバシー分析を行う。
論文 参考訳(メタデータ) (2024-05-09T14:03:52Z) - PreGIP: Watermarking the Pretraining of Graph Neural Networks for Deep
Intellectual Property Protection [35.7109941139987]
グラフニューラルネットワーク(GNN)の事前トレーニングは、さまざまな下流タスクの促進に大きく貢献している。
敵は、下流のタスクのために訓練済みのGNNモデルを違法にコピーして展開することができる。
本稿では,組込み空間の高品質を維持しつつ,IP保護のためのGNNエンコーダの事前訓練を透かし,PreGIPという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-06T22:13:49Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
グラフニューラルネットワーク(GNN)は,グラフベースのタスクにおいて,目立ったグラフ学習モデルとして登場した。
悪意のある攻撃者は、入力グラフデータに摂動を追加することで、予測の公平度を容易に損なうことができる。
本稿では, ELEGANT というフレームワークを提案し, GNN の公正度レベルにおける認証防御の新たな課題について検討する。
論文 参考訳(メタデータ) (2023-11-05T20:29:40Z) - Rethinking White-Box Watermarks on Deep Learning Models under Neural
Structural Obfuscation [24.07604618918671]
ディープニューラルネットワーク(DNN)に対する著作権保護は、AI企業にとって緊急の必要性である。
ホワイトボックスの透かしは、最も知られている透かし除去攻撃に対して正確で、信頼性があり、安全であると考えられている。
主要なホワイトボックスの透かしは、一般的に、テクストダミーニューロンによる神経構造難読化に対して脆弱である。
論文 参考訳(メタデータ) (2023-03-17T02:21:41Z) - Watermarking Graph Neural Networks based on Backdoor Attacks [10.844454900508566]
本稿では,グラフ分類タスクとノード分類タスクの両方に対して,グラフニューラルネットワーク(GNN)のための透かしフレームワークを提案する。
我々のフレームワークは、両方のタスクに対して非常に高い確率(約100ドル)でGNNモデルのオーナシップを検証することができる。
論文 参考訳(メタデータ) (2021-10-21T09:59:59Z) - Watermarking Graph Neural Networks by Random Graphs [38.70278014164124]
GNNモデルに透かしを施す動機となるGNNモデルの所有権を保護する必要がある。
提案手法では,ランダムなノード特徴ベクトルとラベルを持つエルドス・レニー(ER)ランダムグラフを,GNNを訓練するためのトリガとしてランダムに生成する。
モデル検証において、マークされたGNNをトリガーERグラフで活性化することにより、ウォーターマークを出力から再構成してオーナシップを検証することができる。
論文 参考訳(メタデータ) (2020-11-01T14:22:48Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - Adversarial Attack on Hierarchical Graph Pooling Neural Networks [14.72310134429243]
グラフ分類タスクにおけるグラフニューラルネットワーク(GNN)の堅牢性について検討する。
本稿では,グラフ分類タスクに対する逆攻撃フレームワークを提案する。
我々の知る限りでは、これは階層的なGNNベースのグラフ分類モデルに対する敵攻撃に関する最初の研究である。
論文 参考訳(メタデータ) (2020-05-23T16:19:47Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z) - Stealing Links from Graph Neural Networks [72.85344230133248]
最近、ニューラルネットワークはグラフニューラルネットワーク(GNN)として知られるグラフデータに拡張された。
優れたパフォーマンスのため、GNNは医療分析、レコメンダシステム、不正検出など多くのアプリケーションを持っている。
グラフ上でトレーニングされたGNNモデルの出力からグラフを盗む最初の攻撃を提案する。
論文 参考訳(メタデータ) (2020-05-05T13:22:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。