論文の概要: Diverse Image Captioning with Context-Object Split Latent Spaces
- arxiv url: http://arxiv.org/abs/2011.00966v1
- Date: Mon, 2 Nov 2020 13:33:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 11:31:36.366123
- Title: Diverse Image Captioning with Context-Object Split Latent Spaces
- Title(参考訳): コンテキストオブジェクト分割潜在空間を用いた多様な画像キャプション
- Authors: Shweta Mahajan, Stefan Roth
- Abstract要約: 本稿では,画像やテキストのコンテキスト記述における多様性をモデル化するために,コンテキストオブジェクト分割と呼ばれる潜在空間の新たな因子分解を導入する。
本フレームワークは,文脈に基づく疑似監視による多種多様なキャプションを可能にするだけでなく,新たなオブジェクトを持つ画像に拡張し,トレーニングデータにペアのキャプションを含まないようにした。
- 参考スコア(独自算出の注目度): 22.95979735707003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diverse image captioning models aim to learn one-to-many mappings that are
innate to cross-domain datasets, such as of images and texts. Current methods
for this task are based on generative latent variable models, e.g. VAEs with
structured latent spaces. Yet, the amount of multimodality captured by prior
work is limited to that of the paired training data -- the true diversity of
the underlying generative process is not fully captured. To address this
limitation, we leverage the contextual descriptions in the dataset that explain
similar contexts in different visual scenes. To this end, we introduce a novel
factorization of the latent space, termed context-object split, to model
diversity in contextual descriptions across images and texts within the
dataset. Our framework not only enables diverse captioning through
context-based pseudo supervision, but extends this to images with novel objects
and without paired captions in the training data. We evaluate our COS-CVAE
approach on the standard COCO dataset and on the held-out COCO dataset
consisting of images with novel objects, showing significant gains in accuracy
and diversity.
- Abstract(参考訳): 横画像キャプションモデルは、画像やテキストなどのドメイン横断データセットに固有の1対多マッピングを学習することを目的としている。
このタスクの現在の手法は生成的潜在変数モデル(例えば構造的潜在空間を持つvaes)に基づいている。
しかし、事前の作業によって取得されるマルチモダリティの量は、ペア化されたトレーニングデータに限られる。
この制限に対処するために、異なる視覚シーンで同様のコンテキストを説明するデータセットのコンテキスト記述を利用する。
この目的のために,データセット内の画像やテキスト間の文脈記述の多様性をモデル化するために,潜在空間の新たな因子分解(context-object split)を導入する。
本フレームワークは,文脈に基づく疑似監視による多種多様なキャプションを可能にするだけでなく,新たなオブジェクトを持つ画像に拡張し,トレーニングデータにペアのキャプションを持たない。
我々はCOS-CVAEのアプローチを、標準COCOデータセットと、新しいオブジェクトを持つ画像からなるホールドアウトCOCOデータセットで評価し、精度と多様性を大きく向上させた。
関連論文リスト
- Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
単一ソースドメインの一般化は、より信頼性が高く一貫性のあるイメージセグメンテーションを現実の臨床環境にわたって約束する。
本稿では,テキストエンコーダ機能によって案内されるコントラスト学習機構を組み込むことで,テキスト情報を明確に活用する手法を提案する。
文献における既存手法に対して,本手法は良好な性能を発揮する。
論文 参考訳(メタデータ) (2024-04-01T17:48:15Z) - COSA: Concatenated Sample Pretrained Vision-Language Foundation Model [78.32081709802873]
ほとんどの視覚言語基盤モデルは、事前トレーニングに画像テキストデータセットを使用している。
我々は,COncatenated SAmple pretrained vision- language foundation modelであるCOSAを提案する。
複数の画像テキストペアを事前学習用入力として逐次結合することで、これを実現する。
この変換により、既存の画像テキストコーパスを擬似長文ビデオパラグラフコーパスに変換する。
論文 参考訳(メタデータ) (2023-06-15T12:29:42Z) - HGAN: Hierarchical Graph Alignment Network for Image-Text Retrieval [13.061063817876336]
画像テキスト検索のための階層型グラフアライメントネットワーク(HGAN)を提案する。
まず、包括的マルチモーダル特徴を捉えるために、画像の特徴グラフとテキストのモダリティをそれぞれ構築する。
そして、MFAR(Multi-granularity Feature Aggregation and Rearrangement)モジュールを設計した多粒性共有空間を構築する。
最後に、最終的な画像とテキストの特徴は、階層的アライメントを達成するために、3レベル類似関数によってさらに洗練される。
論文 参考訳(メタデータ) (2022-12-16T05:08:52Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
ストーリービジュアライゼーションは、複数文のストーリーで各文をナレーションする一連の画像を生成することを目的としている。
現在の作業は、その固定されたアーキテクチャと入力モダリティの多様性のため、セマンティックなミスアライメントの問題に直面している。
GANに基づく生成モデルにおいて,テキストと画像表現のセマンティックアライメントを学習し,それらのセマンティックレベルを一致させる方法について検討する。
論文 参考訳(メタデータ) (2022-11-14T11:41:44Z) - Guiding Attention using Partial-Order Relationships for Image Captioning [2.620091916172863]
誘導注意ネットワーク機構は、視覚シーンとテキスト記述の関係を利用する。
この埋め込み空間は、共有セマンティック空間における類似の画像、トピック、キャプションを許容する。
MSCOCOデータセットに基づく実験結果は,我々のアプローチの競争力を示している。
論文 参考訳(メタデータ) (2022-04-15T14:22:09Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
本稿では,データソースの非一様結合をトレーニングすることで,流動的な記述を生成するタスクに対処する。
ノイズの多い画像とテキストのペアを持つ大規模データセットは、サブ最適の監視源を提供する。
本稿では,検索コンポーネントから抽出したスタイルトークンとキーワードを組み込むことにより,セマンティクスと記述スタイルを活用・分離することを提案する。
論文 参考訳(メタデータ) (2021-11-24T19:00:05Z) - Is An Image Worth Five Sentences? A New Look into Semantics for
Image-Text Matching [10.992151305603267]
本稿では,検索項目の意味的関連度を評価するための2つの指標を提案する。
画像キャプションの指標であるCIDErを用いて,標準的な三重項損失に最適化されるセマンティック適応マージン(SAM)を定義する。
論文 参考訳(メタデータ) (2021-10-06T09:54:28Z) - Dense Relational Image Captioning via Multi-task Triple-Stream Networks [95.0476489266988]
視覚的な場面におけるオブジェクト間の情報に関して,キャプションを生成することを目的とした新しいタスクである。
このフレームワークは、多様性と情報の量の両方において有利であり、包括的なイメージ理解につながる。
論文 参考訳(メタデータ) (2020-10-08T09:17:55Z) - PhraseCut: Language-based Image Segmentation in the Wild [62.643450401286]
自然言語のフレーズを与えられた画像領域を分割する問題について考察する。
私たちのデータセットは、Visual Genomeデータセットの上に収集されます。
我々の実験は、我々のデータセットにおける概念のスケールと多様性が、既存の最先端技術に重大な課題をもたらすことを示している。
論文 参考訳(メタデータ) (2020-08-03T20:58:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。