論文の概要: AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the
Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of
BMS and Environmental Data
- arxiv url: http://arxiv.org/abs/2011.01047v1
- Date: Fri, 9 Oct 2020 09:51:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 06:38:11.099119
- Title: AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the
Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of
BMS and Environmental Data
- Title(参考訳): AI Chiller:BMSと環境データの融合によるビッグデータ分析によるHVACシステム構築の省エネのためのオープンIoTクラウドベースの機械学習フレームワーク
- Authors: Yong Yu
- Abstract要約: 建物における省エネルギーと二酸化炭素排出量削減は気候変動対策の鍵となる手段の一つである。
シラーシステムの電力消費の最適化は、機械工学と建築サービス領域で広く研究されてきた。
ビッグデータとAIの進歩により、最適化問題への機械学習の採用が人気を集めている。
- 参考スコア(独自算出の注目度): 12.681421165031576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy saving and carbon emission reduction in buildings is one of the key
measures in combating climate change. Heating, Ventilation, and Air
Conditioning (HVAC) system account for the majority of the energy consumption
in the built environment, and among which, the chiller plant constitutes the
top portion. The optimization of chiller system power consumption had been
extensively studied in the mechanical engineering and building service domains.
Many works employ physical models from the domain knowledge. With the advance
of big data and AI, the adoption of machine learning into the optimization
problems becomes popular. Although many research works and projects turn to
this direction for energy saving, the application into the optimization problem
remains a challenging task. This work is targeted to outline a framework for
such problems on how the energy saving should be benchmarked, if holistic or
individually modeling should be used, how the optimization is to be conducted,
why data pattern augmentation at the initial deployment is a must, why the
gradually increasing changes strategy must be used. Results of analysis on
historical data and empirical experiment on live data are presented.
- Abstract(参考訳): 建物における省エネルギーと二酸化炭素排出量削減は気候変動対策の鍵となる手段の一つである。
暖房、換気、空調(hvac)システムは、構築された環境におけるエネルギー消費量の大部分を占めており、その内、冷却プラントが最上位を占めている。
シラーシステムの電力消費の最適化は、機械工学と建築サービス領域で広く研究されてきた。
多くの作品は、ドメイン知識から物理モデルを採用する。
ビッグデータとAIの進歩により、最適化問題への機械学習の採用が人気を集めている。
多くの研究やプロジェクトは省エネのためにこの方向に向かうが、最適化問題への応用は依然として難しい課題である。
この作業は、省エネのベンチマーク方法、全体的あるいは個人的モデリングの使用方法、最適化の実施方法、初期配置におけるデータパターンの強化が必須であること、段階的に増加する変更戦略を使用する必要がある理由、といった問題に対するフレームワークの概略を目的としている。
歴史的データの解析結果と実データに関する実証実験について述べる。
関連論文リスト
- Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering [3.2114754609864695]
暖房、換気、空調のシステムは、建築セクターにおけるエネルギー使用量の約40%を消費する。
大規模HVACシステム管理では,各サブシステムに対して詳細なモデルを構築することは困難である。
k平均クラスタリング法に基づく新しいデータ駆動室温予測モデルを提案する。
論文 参考訳(メタデータ) (2024-02-21T09:04:45Z) - Digital Twin for Grey Box modeling of Multistory residential building
thermal dynamics [1.0987093127987972]
北ヨーロッパでは、暖房エネルギーだけで全体のエネルギー消費の70%を占める。
本研究では,建築熱力学のグレーボックスモデリングを容易にするアーキテクチャを提案する。
このアーキテクチャは、デジタルツインプラットフォームを作成するケーススタディで検証されている。
論文 参考訳(メタデータ) (2024-02-05T11:25:42Z) - Heuristics and Metaheuristics for Dynamic Management of Computing and
Cooling Energy in Cloud Data Centers [0.0]
共同冷却・計算最適化のための新しい電力・熱対応戦略とモデルを提案する。
結果から,メタヒューリスティックアルゴリズムと最適適応アルゴリズムの併用により,グローバルエネルギーを高速かつ軽量な最適化戦略に記述できることが示唆された。
このアプローチにより、コンピューティングと冷却インフラストラクチャの両方を考慮して、データセンターのエネルギー効率を21.74%向上し、サービス品質を維持しながら、最大で21.74%向上できる。
論文 参考訳(メタデータ) (2023-12-17T09:40:36Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
本研究は,多室ビルにおける室内温度予測のためのグローバルトランスフォーマーアーキテクチャを提案する。
エネルギー消費を最適化し、HVACシステムに関連する温室効果ガス排出を削減することを目的としている。
本研究は,マルチルームビルにおける室内温度予測にトランスフォーマーアーキテクチャを適用した最初の事例である。
論文 参考訳(メタデータ) (2023-10-31T14:09:32Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Intelligent Building Control Systems for Thermal Comfort and
Energy-Efficiency: A Systematic Review of Artificial Intelligence-Assisted
Techniques [3.2926483061955922]
建設作業は、ほとんどの国で消費される総一次エネルギーのかなりの割合を占める。
HVACシステムにおけるエネルギー使用と適切な室内快適度との間のスイートスポットを見つけるために、さまざまなAI技術が展開されている。
建築制御におけるAI技術の適用は有望な研究分野であり、AIベースの制御の性能はまだ十分に満足していない。
論文 参考訳(メタデータ) (2021-04-06T01:04:28Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。