論文の概要: Development of Low-Cost IoT Units for Thermal Comfort Measurement and AC Energy Consumption Prediction System
- arxiv url: http://arxiv.org/abs/2411.19536v1
- Date: Fri, 29 Nov 2024 08:24:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:19:23.278965
- Title: Development of Low-Cost IoT Units for Thermal Comfort Measurement and AC Energy Consumption Prediction System
- Title(参考訳): 熱快適測定・交流エネルギー消費予測システムのための低コストIoTユニットの開発
- Authors: Yutong Chen, Daisuke Sumiyoshi, Riki Sakai, Takahiro Yamamoto, Takahiro Ueno, Jewon Oh,
- Abstract要約: 政府は2019年に、AIとIoT技術を活用した自主的な省エネ行動を促進するBI-Techプロジェクトを開始した。
本研究は,室内熱環境のリアルタイムモニタリングと空調設定点温度の計測にRaspberry Pi 4B+プラットフォームを利用する,費用対効果の高いIoTベースのBI-Techシステムを提案する。
機械学習モデルは、R2値97%で達成され、ユーザ間の省エネ性を促進するためのシステムの効率性を実証した。
- 参考スコア(独自算出の注目度): 2.528925087006564
- License:
- Abstract: In response to the substantial energy consumption in buildings, the Japanese government initiated the BI-Tech (Behavioral Insights X Technology) project in 2019, aimed at promoting voluntary energy-saving behaviors through the utilization of AI and IoT technologies. Our study aimed at small and medium-sized office buildings introduces a cost-effective IoT-based BI-Tech system, utilizing the Raspberry Pi 4B+ platform for real-time monitoring of indoor thermal conditions and air conditioner (AC) set-point temperature. Employing machine learning and image recognition, the system analyzes data to calculate the PMV index and predict energy consumption changes due to temperature adjustments. The integration of mobile and desktop applications conveys this information to users, encouraging energy-efficient behavior modifications. The machine learning model achieved with an R2 value of 97%, demonstrating the system's efficiency in promoting energy-saving habits among users.
- Abstract(参考訳): ビル内のエネルギー消費の大幅な増加に対応するため、日本政府は、AIとIoT技術を活用した自発的な省エネルギー行動を促進するBI-Tech(Behavioral Insights X Technology)プロジェクトを2019年に開始した。
小型・中規模のオフィスビルを対象とした調査では,Raspberry Pi 4B+プラットフォームを利用して室内熱環境と空調(AC)設定温度のリアルタイムモニタリングを行う,低コストなIoTベースのBI-Techシステムを導入している。
機械学習と画像認識を用いてデータを解析し,温度調整によるPMV指数の算出とエネルギー消費変化の予測を行う。
モバイルアプリケーションとデスクトップアプリケーションの統合は、この情報をユーザに伝達し、エネルギー効率のよい行動修正を促進する。
機械学習モデルは、R2値97%で達成され、ユーザ間の省エネ性を促進するためのシステムの効率性を実証した。
関連論文リスト
- An IoT Framework for Building Energy Optimization Using Machine Learning-based MPC [0.0]
本研究では,モノのインターネット(IoT)フレームワークを用いてエアハンドリングユニット(AHU)システムを制御するための,機械学習に基づくモデル予測制御(MPC)アプローチを提案する。
提案フレームワークは,ニューラルネットワーク(ANN)を用いて動的線形熱モデルパラメータをリアルタイムに構築する手法である。
論文 参考訳(メタデータ) (2024-08-23T14:38:18Z) - Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
我々はAIのコンピュータビジョン技術を用いて、スマートエネルギー管理のための非侵襲的な負荷監視手法を設計する。
マルチスケールの特徴抽出とアテンション機構を備えたU字型ディープニューラルネットワークを用いて,色特徴画像からすべての電気負荷を認識することを提案する。
論文 参考訳(メタデータ) (2023-08-08T04:52:19Z) - Autonomous Payload Thermal Control [55.2480439325792]
小さな衛星では、熱制御装置、科学機器、電子部品のスペースは少ない。
深部強化学習を用いた自律型熱制御ツールを提案する。
提案するフレームワークは,運用範囲の温度を維持するためにペイロード処理能力の制御を学べる。
論文 参考訳(メタデータ) (2023-07-28T09:40:19Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - Internet of Behavior (IoB) and Explainable AI Systems for Influencing
IoT Behavior [45.776994534648104]
Internet of Behavior (IoB) と Explainable AI (XAI) は電力消費のユースケースとして提案されている。
シナリオの結果、200時間以上で消費された電力と比較して、アクティブ電力の522.2kWが減少した。
論文 参考訳(メタデータ) (2021-09-15T12:16:11Z) - Intelligent Building Control Systems for Thermal Comfort and
Energy-Efficiency: A Systematic Review of Artificial Intelligence-Assisted
Techniques [3.2926483061955922]
建設作業は、ほとんどの国で消費される総一次エネルギーのかなりの割合を占める。
HVACシステムにおけるエネルギー使用と適切な室内快適度との間のスイートスポットを見つけるために、さまざまなAI技術が展開されている。
建築制御におけるAI技術の適用は有望な研究分野であり、AIベースの制御の性能はまだ十分に満足していない。
論文 参考訳(メタデータ) (2021-04-06T01:04:28Z) - Appliance-Level Monitoring with Micro-Moment Smart Plugs [2.294014185517203]
大規模マルチアプライアンスエネルギー効率プログラムの一環として,マイクロモーメントベースのスマートプラグシステムを提案する。
プラグはホームオートメーション機能も備えている。
現在の実装結果から,提案システムではコスト効率の高いデプロイメントが実現されている。
論文 参考訳(メタデータ) (2020-12-10T16:22:40Z) - AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the
Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of
BMS and Environmental Data [12.681421165031576]
建物における省エネルギーと二酸化炭素排出量削減は気候変動対策の鍵となる手段の一つである。
シラーシステムの電力消費の最適化は、機械工学と建築サービス領域で広く研究されてきた。
ビッグデータとAIの進歩により、最適化問題への機械学習の採用が人気を集めている。
論文 参考訳(メタデータ) (2020-10-09T09:51:03Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。