論文の概要: Cross-lingual Word Embeddings beyond Zero-shot Machine Translation
- arxiv url: http://arxiv.org/abs/2011.01682v1
- Date: Tue, 3 Nov 2020 13:18:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 04:53:08.465742
- Title: Cross-lingual Word Embeddings beyond Zero-shot Machine Translation
- Title(参考訳): ゼロショット機械翻訳を超える言語間単語埋め込み
- Authors: Shifei Chen and Ali Basirat
- Abstract要約: 本稿では,言語間単語埋め込みのみを基礎とした多言語ニューラルマシン翻訳モデルの未知言語への変換可能性について検討する。
実験の結果,翻訳知識は他言語に弱く伝達でき,翻訳可能性の程度は言語間の関連性に依存することがわかった。
- 参考スコア(独自算出の注目度): 0.5243215690489517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the transferability of a multilingual neural machine translation
model to unseen languages when the transfer is grounded solely on the
cross-lingual word embeddings. Our experimental results show that the
translation knowledge can transfer weakly to other languages and that the
degree of transferability depends on the languages' relatedness. We also
discuss the limiting aspects of the multilingual architectures that cause weak
translation transfer and suggest how to mitigate the limitations.
- Abstract(参考訳): 本稿では,言語間単語埋め込みのみを基礎とした多言語ニューラルマシン翻訳モデルの未知言語への変換可能性について検討する。
実験の結果,翻訳知識は他の言語に弱く伝達でき,翻訳可能性の程度は言語の関連性に依存することがわかった。
また、弱い翻訳伝達を引き起こす多言語アーキテクチャの制限面についても論じ、その制限を緩和する方法を提案する。
関連論文リスト
- Decoupled Vocabulary Learning Enables Zero-Shot Translation from Unseen Languages [55.157295899188476]
ニューラルマシン翻訳システムは、異なる言語の文を共通の表現空間にマッピングすることを学ぶ。
本研究では、この仮説を未知の言語からのゼロショット翻訳により検証する。
この設定により、全く見えない言語からのゼロショット翻訳が可能になることを実証する。
論文 参考訳(メタデータ) (2024-08-05T07:58:58Z) - Cross-Linguistic Syntactic Difference in Multilingual BERT: How Good is
It and How Does It Affect Transfer? [50.48082721476612]
マルチリンガルBERT (mBERT) は, 言語間シンタクティックな機能を示した。
我々は,mBERTから引き起こされる文法的関係の分布を,24言語に類型的に異なる文脈で検討した。
論文 参考訳(メタデータ) (2022-12-21T09:44:08Z) - A Simple and Effective Method to Improve Zero-Shot Cross-Lingual
Transfer Learning [6.329304732560936]
既存のゼロショットのクロスリンガル転送法は、並列コーパスやバイリンガル辞書に依存している。
意味喪失のない仮想多言語埋め込みに英語の埋め込みを移すための埋め込み・プッシュ・アテンション・プル・ロバスト・ターゲットを提案する。
論文 参考訳(メタデータ) (2022-10-18T15:36:53Z) - When is BERT Multilingual? Isolating Crucial Ingredients for
Cross-lingual Transfer [15.578267998149743]
サブワード重複の欠如は,言語が単語順に異なる場合,ゼロショット転送に大きく影響することを示す。
言語間の伝達性能と単語埋め込みアライメントの間には強い相関関係がある。
その結果、言語間の単語埋め込みアライメントを明示的に改善する多言語モデルに焦点が当てられた。
論文 参考訳(メタデータ) (2021-10-27T21:25:39Z) - What makes multilingual BERT multilingual? [60.9051207862378]
本研究は,既存の言語間能力の文献を補うための詳細な実験研究である。
我々は,非コンテクスト化および文脈化表現モデルの言語間能力と同一データとの比較を行った。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素であることがわかった。
論文 参考訳(メタデータ) (2020-10-20T05:41:56Z) - Cross-Lingual Transfer in Zero-Shot Cross-Language Entity Linking [19.083300046605252]
言語間リンクの基盤は、複数の言語で言及され、単一の言語知識ベースに言及される。
BERTの多言語化能力は単言語および多言語設定において頑健な性能をもたらすことが判明した。
論文 参考訳(メタデータ) (2020-10-19T20:08:26Z) - From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual
Transfer with Multilingual Transformers [62.637055980148816]
言語モデリングの目的によって事前訓練された多言語トランスフォーマーは、NLPの事実上のデフォルト転送パラダイムとなっている。
膨大な多言語変換器による言語間変換は,リソースリーンシナリオや遠方言語では著しく効果が低いことを示す。
論文 参考訳(メタデータ) (2020-05-01T22:04:58Z) - A Study of Cross-Lingual Ability and Language-specific Information in
Multilingual BERT [60.9051207862378]
Multilingual BERTは、言語間転送タスクで驚くほどうまく機能します。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素です。
多言語BERTの言語間能力を改善するために、計算的に安価だが効果的なアプローチがある。
論文 参考訳(メタデータ) (2020-04-20T11:13:16Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
機械翻訳は、既存の言語間モデルに顕著な影響を与える微妙なアーティファクトを導入することができることを示す。
自然言語の推論では、前提と仮説を独立に翻訳することで、それらの間の語彙的重複を減らすことができる。
また、XNLIでは、それぞれ4.3点と2.8点の翻訳とゼロショットのアプローチを改善している。
論文 参考訳(メタデータ) (2020-04-09T17:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。