論文の概要: What makes multilingual BERT multilingual?
- arxiv url: http://arxiv.org/abs/2010.10938v1
- Date: Tue, 20 Oct 2020 05:41:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 06:00:50.387633
- Title: What makes multilingual BERT multilingual?
- Title(参考訳): 多言語BERTとは何か?
- Authors: Chi-Liang Liu and Tsung-Yuan Hsu and Yung-Sung Chuang and Hung-yi Lee
- Abstract要約: 本研究は,既存の言語間能力の文献を補うための詳細な実験研究である。
我々は,非コンテクスト化および文脈化表現モデルの言語間能力と同一データとの比較を行った。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素であることがわかった。
- 参考スコア(独自算出の注目度): 60.9051207862378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, multilingual BERT works remarkably well on cross-lingual transfer
tasks, superior to static non-contextualized word embeddings. In this work, we
provide an in-depth experimental study to supplement the existing literature of
cross-lingual ability. We compare the cross-lingual ability of
non-contextualized and contextualized representation model with the same data.
We found that datasize and context window size are crucial factors to the
transferability.
- Abstract(参考訳): 近年,多言語BERTは静的な非コンテクチュアルな単語埋め込みよりも優れた言語間伝達タスクにおいて極めてうまく機能している。
本研究は,既存の言語間能力の文献を補うための詳細な実験研究である。
我々は,非コンテクスト化および文脈化表現モデルの言語間能力と同一データとの比較を行った。
データサイズとコンテキストウィンドウサイズが転送可能性の重要な要因であることがわかった。
関連論文リスト
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Languages You Know Influence Those You Learn: Impact of Language
Characteristics on Multi-Lingual Text-to-Text Transfer [4.554080966463776]
マルチ言語モデル (LM) は低リソース言語での自然言語処理の実現に成功している。
このようなモデル、特にmT5は、言語間の言語的および意味的な知識をどう転送するかをよりよく理解しようとしています。
この研究の鍵となる発見は、構文、形態学、音韻学の類似性が言語間移動のよい予測因子であることである。
論文 参考訳(メタデータ) (2022-12-04T07:22:21Z) - Syntax-augmented Multilingual BERT for Cross-lingual Transfer [37.99210035238424]
この研究は、言語構文とトレーニングmBERTを明示的に提供することが、言語間転送に役立つことを示している。
実験の結果,mBERTの構文拡張は,一般的なベンチマーク上での言語間移動を改善することがわかった。
論文 参考訳(メタデータ) (2021-06-03T21:12:50Z) - First Align, then Predict: Understanding the Cross-Lingual Ability of
Multilingual BERT [2.2931318723689276]
言語間移動は、ある言語への関心のタスクを微調整し、ある言語を個別に評価することから生じる。
多言語bertは,マルチリンガルエンコーダとタスク固有言語非依存予測器の2つのサブネットワークの積み重ねと見なすことができる。
エンコーダは言語間移動に不可欠であり、微調整中はほとんど変化しないが、タスク予測器は転写にほとんど重要ではなく、微調整時に赤くなる。
論文 参考訳(メタデータ) (2021-01-26T22:12:38Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
我々は,mBERTを微調整するための多言語コードスイッチングデータを生成するためのデータ拡張フレームワークを提案する。
既存の研究と比較すると,本手法は訓練にバイリンガル文を頼らず,複数の対象言語に対して1つの学習プロセスしか必要としない。
論文 参考訳(メタデータ) (2020-06-11T13:15:59Z) - Identifying Necessary Elements for BERT's Multilinguality [4.822598110892846]
マルチリンガルBERT (mBERT) は高品質なマルチリンガル表現を出力し、効率的なゼロショット転送を可能にする。
本研究の目的は,BERTのアーキテクチャ特性と多言語化に必要な言語の言語特性を同定することである。
論文 参考訳(メタデータ) (2020-05-01T14:27:14Z) - A Study of Cross-Lingual Ability and Language-specific Information in
Multilingual BERT [60.9051207862378]
Multilingual BERTは、言語間転送タスクで驚くほどうまく機能します。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素です。
多言語BERTの言語間能力を改善するために、計算的に安価だが効果的なアプローチがある。
論文 参考訳(メタデータ) (2020-04-20T11:13:16Z) - On the Language Neutrality of Pre-trained Multilingual Representations [70.93503607755055]
語彙意味論に関して,多言語文脈埋め込みの言語中立性を直接的に検討する。
その結果、文脈埋め込みは言語ニュートラルであり、概して静的な単語型埋め込みよりも情報的であることがわかった。
本稿では,言語識別における最先端の精度に到達し,並列文の単語アライメントのための統計的手法の性能を一致させる方法について述べる。
論文 参考訳(メタデータ) (2020-04-09T19:50:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。