A spatial hue similarity measure for assessment of colourisation
- URL: http://arxiv.org/abs/2011.01700v1
- Date: Tue, 3 Nov 2020 13:43:36 GMT
- Title: A spatial hue similarity measure for assessment of colourisation
- Authors: Se\'an Mullery and Paul F. Whelan
- Abstract summary: We use polar form of the a*b* channels from the CIEL*a*b* colour space to separate the multi-modal problems.
We apply SSIM to the chroma channel but reformulate SSIM for the hue channel to a measure we call the Spatial Hue Similarity Measure (SHSM)
This reformulation allows spatially-coherent hue channels to achieve a high score while penalising spatially-incoherent modes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic colourisation of grey-scale images is an ill-posed multi-modal
problem. Where full-reference images exist, objective performance measures rely
on pixel-difference techniques such as MSE and PSNR. These measures penalise
any plausible modes other than the reference ground-truth; They often fail to
adequately penalise implausible modes if they are close in pixel distance to
the ground-truth; As these are pixel-difference methods they cannot assess
spatial coherency. We use the polar form of the a*b* channels from the
CIEL*a*b* colour space to separate the multi-modal problems, which we confine
to the hue channel, and the common-mode which applies to the chroma channel. We
apply SSIM to the chroma channel but reformulate SSIM for the hue channel to a
measure we call the Spatial Hue Similarity Measure (SHSM). This reformulation
allows spatially-coherent hue channels to achieve a high score while penalising
spatially-incoherent modes. This method allows qualitative and quantitative
performance comparison of SOTA colourisation methods and reduces reliance on
subjective human visual inspection.
Related papers
- A New Cross-Space Total Variation Regularization Model for Color Image Restoration with Quaternion Blur Operator [20.00683294783224]
Cross-channel deblurring problem in color image processing is difficult to solve due to complex coupling and structural blurring of color pixels.
We present a novel cross-space total variation (CSTV) regularization model for color image deblurring.
New L-curve method is proposed to find a sweet balance of regularization functionals on different color spaces.
arXiv Detail & Related papers (2024-05-20T15:29:26Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - Dif-Fusion: Towards High Color Fidelity in Infrared and Visible Image
Fusion with Diffusion Models [54.952979335638204]
We propose a novel method with diffusion models, termed as Dif-Fusion, to generate the distribution of the multi-channel input data.
Our method is more effective than other state-of-the-art image fusion methods, especially in color fidelity.
arXiv Detail & Related papers (2023-01-19T13:37:19Z) - Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color
Image Denoising [9.20787253404652]
One traditional strategy is to convert the RGB image to a less correlated color space and denoise each channel of the new space separately.
This paper proposes a new multi-channel optimization model for color image denoising under the nuclear norm minus Frobenius norm minimization framework.
Experimental results on both synthetic and real noise datasets demonstrate the proposed model outperforms state-of-the-art models.
arXiv Detail & Related papers (2022-09-16T04:10:29Z) - Cross-Camera Deep Colorization [10.254243409261898]
We propose an end-to-end convolutional neural network to align and fuse images from a color-plus-mono dual-camera system.
Our method consistently achieves substantial improvements, i.e., around 10dB PSNR gain.
arXiv Detail & Related papers (2022-08-26T11:02:14Z) - Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared
Person Re-Identification [84.32086702849338]
We propose a novel modality-adaptive mixup and invariant decomposition (MID) approach for RGB-infrared person re-identification.
MID designs a modality-adaptive mixup scheme to generate suitable mixed modality images between RGB and infrared images.
Experiments on two challenging benchmarks demonstrate superior performance of MID over state-of-the-art methods.
arXiv Detail & Related papers (2022-03-03T14:26:49Z) - Mitigating Channel-wise Noise for Single Image Super Resolution [33.383282898248076]
We propose to super-resolve noisy color images by considering the color channels jointly.
Results demonstrate the super-resolving capability of the approach in real scenarios.
arXiv Detail & Related papers (2021-12-14T17:45:15Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
We present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor.
Our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding.
arXiv Detail & Related papers (2021-04-27T07:35:30Z) - Creating Artificial Modalities to Solve RGB Liveness [79.9255035557979]
We introduce two types of artificial transforms: rank pooling and optical flow, combined in end-to-end pipeline for spoof detection.
The proposed method achieves state-of-the-art on the largest cross-ethnicity face anti-spoofing dataset CASIA-SURF CeFA (RGB)
arXiv Detail & Related papers (2020-06-29T13:19:22Z) - Leveraging Photogrammetric Mesh Models for Aerial-Ground Feature Point
Matching Toward Integrated 3D Reconstruction [19.551088857830944]
Integration of aerial and ground images has been proved as an efficient approach to enhance the surface reconstruction in urban environments.
Previous studies based on geometry-aware image rectification have alleviated this problem.
We propose a novel approach: leveraging photogrammetric mesh models for aerial-ground image matching.
arXiv Detail & Related papers (2020-02-21T01:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.