論文の概要: MAD-VAE: Manifold Awareness Defense Variational Autoencoder
- arxiv url: http://arxiv.org/abs/2011.01755v1
- Date: Sat, 31 Oct 2020 09:04:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 05:21:51.712883
- Title: MAD-VAE: Manifold Awareness Defense Variational Autoencoder
- Title(参考訳): mad-vae:多様体認識防御変分オートエンコーダ
- Authors: Frederick Morlock, Dingsu Wang
- Abstract要約: 本稿では,防衛モデルの堅牢性を改善するためのいくつかの手法を紹介する。
MNISTデータセットに関する広範な実験により,本アルゴリズムの有効性を実証した。
また,既存の逆潜時空間攻撃の適用可能性についても論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep generative models such as Defense-GAN and Defense-VAE have made
significant progress in terms of adversarial defenses of image classification
neural networks, several methods have been found to circumvent these defenses.
Based on Defense-VAE, in our research we introduce several methods to improve
the robustness of defense models. The methods introduced in this paper are
straight forward yet show promise over the vanilla Defense-VAE. With extensive
experiments on MNIST data set, we have demonstrated the effectiveness of our
algorithms against different attacks. Our experiments also include attacks on
the latent space of the defensive model. We also discuss the applicability of
existing adversarial latent space attacks as they may have a significant flaw.
- Abstract(参考訳): ディフェンスGANやディフェンスVAEのような深層生成モデルは、画像分類ニューラルネットワークの敵防衛において大きな進歩を遂げているが、これらの防御を回避できるいくつかの方法が発見されている。
そこで,本研究では,防衛モデルのロバスト性を改善する手法をいくつか紹介する。
本論文で紹介される手法は, 直接前進するが, バニラディフェンス-VAEに対する約束を示す。
MNISTデータセットに関する広範な実験により、異なる攻撃に対するアルゴリズムの有効性を実証した。
我々の実験には、防御モデルの潜在空間に対する攻撃も含まれている。
また,既存の逆潜時空間攻撃の適用可能性についても論じる。
関連論文リスト
- Hindering Adversarial Attacks with Multiple Encrypted Patch Embeddings [13.604830818397629]
効率性とロバスト性の両方に着目したキーベースの新たな防衛手法を提案する。
我々は,(1)効率的なトレーニングと(2)任意ランダム化という2つの大きな改善をともなう,以前の防衛基盤を構築した。
実験はImageNetデータセット上で行われ、提案された防御は最先端の攻撃兵器に対して評価された。
論文 参考訳(メタデータ) (2023-09-04T14:08:34Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Randomness in ML Defenses Helps Persistent Attackers and Hinders
Evaluators [49.52538232104449]
堅牢なMLディフェンスを設計することがますます重要になっている。
近年の研究では、当初最先端の攻撃に抵抗する多くの防衛は、適応的な敵によって破壊される可能性があることが判明している。
我々は、防御設計をシンプルにし、ホワイトボックスの防御は可能な限りランダム性を損なうべきだと論じる。
論文 参考訳(メタデータ) (2023-02-27T01:33:31Z) - Scale-Invariant Adversarial Attack for Evaluating and Enhancing
Adversarial Defenses [22.531976474053057]
プロジェクテッド・グラディエント・Descent (PGD) 攻撃は最も成功した敵攻撃の1つであることが示されている。
我々は, 対向層の特徴とソフトマックス層の重みの角度を利用して, 対向層の生成を誘導するスケール不変逆襲 (SI-PGD) を提案する。
論文 参考訳(メタデータ) (2022-01-29T08:40:53Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z) - Theoretical Study of Random Noise Defense against Query-Based Black-Box
Attacks [72.8152874114382]
本研究では、クエリベースのブラックボックス攻撃に対するランダムノイズ防御(RND)と呼ばれる単純だが有望な防御手法を検討する。
軽量で、既製のモデルやその他の防衛戦略と直接組み合わせることができます。
本研究では,クエリベースのブラックボックス攻撃に対する rnd の防御効果と対応する適応攻撃がマグニチュード比に大きく依存することを示すための理論的解析を行った。
論文 参考訳(メタデータ) (2021-04-23T08:39:41Z) - Sparse Coding Frontend for Robust Neural Networks [11.36192454455449]
ディープニューラルネットワークは、小さくて逆向きに作られた摂動に弱いことが知られている。
現在の対人攻撃に対する防御方法は、対人訓練の変種である。
本稿では,クリーン画像に基づくスパース符号化に基づく根本的に異なる防御手法を提案する。
論文 参考訳(メタデータ) (2021-04-12T11:14:32Z) - Attack Agnostic Adversarial Defense via Visual Imperceptible Bound [70.72413095698961]
本研究の目的は、目視攻撃と目視攻撃の両方に対して一定の範囲内で堅牢な防衛モデルを設計することである。
提案するディフェンスモデルは,MNIST,CIFAR-10,Tiny ImageNetデータベース上で評価される。
提案アルゴリズムは攻撃非依存であり,攻撃アルゴリズムの知識を必要としない。
論文 参考訳(メタデータ) (2020-10-25T23:14:26Z) - Defense against adversarial attacks on spoofing countermeasures of ASV [95.87555881176529]
本稿では,ASVスプーフィング対策モデルの脆弱性を軽減するために,パッシブ・ディフェンス法,空間平滑化法,プロアクティブ・ディフェンス・トレーニング法を提案する。
実験結果から, これらの2つの防御手法は, 対向する対向的例に対して, 対向的対策モデルを偽装するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2020-03-06T08:08:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。