Hidden time-reversal symmetry, quantum detailed balance and exact
solutions of driven-dissipative quantum systems
- URL: http://arxiv.org/abs/2011.02148v1
- Date: Wed, 4 Nov 2020 06:21:44 GMT
- Title: Hidden time-reversal symmetry, quantum detailed balance and exact
solutions of driven-dissipative quantum systems
- Authors: David Roberts, Andrew Lingenfelter, Aashish Clerk
- Abstract summary: Driven-dissipative quantum systems generically do not satisfy simple notions of detailed balance based on the time symmetry of correlation functions.
We show that such systems can nonetheless exhibit a hidden time-reversal symmetry which most directly manifests itself in a doubled version of the original system.
This hidden time-reversal symmetry has a direct operational utility: it provides a general method for finding exact solutions of non-trivial steady states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Driven-dissipative quantum systems generically do not satisfy simple notions
of detailed balance based on the time symmetry of correlation functions. We
show that such systems can nonetheless exhibit a hidden time-reversal symmetry
which most directly manifests itself in a doubled version of the original
system prepared in an appropriate entangled thermofield double state. This
hidden time-reversal symmetry has a direct operational utility: it provides a
general method for finding exact solutions of non-trivial steady states.
Special cases of this approach include the coherent quantum absorber and
complex-$P$ function methods from quantum optics. We also show that hidden TRS
has observable consequences even in single-system experiments, and can be
broken by the non-trivial combination of nonlinearity, thermal fluctuations,
and driving. To illustrate our ideas, we analyze concrete examples of driven
qubits and nonlinear cavities. These systems exhibit hidden time-reversal
symmetry but not conventional detailed balance.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Stable infinite-temperature eigenstates in SU(2)-symmetric nonintegrable models [0.0]
A class of nonintegrable bond-staggered models is endowed with a large number of zero-energy eigenstates and possesses a non-Abelian internal symmetry.
We show that few-magnon zero-energy states have an exact analytical description, allowing us to build a basis of low-entangled fixed-separation states.
arXiv Detail & Related papers (2024-07-16T17:48:47Z) - Engineering One Axis Twisting via a Dissipative Berry Phase Using Strong
Symmetries [0.0]
We show how a driven-dissipative cavity coupled to a collective ensemble of atoms can generate metrologically useful spin-squeezed states.
This work shows that it is possible to generate entanglement in an atom-cavity resonant regime with macroscopic optical excitations of the system.
arXiv Detail & Related papers (2024-01-11T19:03:46Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Non-Hermitian Floquet-Free Analytically Solvable Time Dependant Systems [0.0]
We introduce a class of time-dependent non-Hermitian Hamiltonians that can describe a two-level system with temporally modulated on-site potential and couplings.
Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hidden PT-symmetry.
arXiv Detail & Related papers (2023-02-02T04:57:13Z) - On the generality of symmetry breaking and dissipative freezing in
quantum trajectories [0.0]
We argue that dissipative freezing is a general consequence of the presence of a strong symmetry in an open system with only a few exceptions.
In the limiting case that eigenmodes with purely imaginary eigenvalues are manifest in these sectors, freezing fails to occur.
The absence of freezing at the level of a single quantum trajectory provides a simple, computationally efficient way of identifying these traceless modes.
arXiv Detail & Related papers (2022-04-13T18:02:06Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.