論文の概要: Hybrid Supervised Reinforced Model for Dialogue Systems
- arxiv url: http://arxiv.org/abs/2011.02243v1
- Date: Wed, 4 Nov 2020 12:03:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 21:20:31.486527
- Title: Hybrid Supervised Reinforced Model for Dialogue Systems
- Title(参考訳): 対話システムのためのハイブリッド監視強化モデル
- Authors: Carlos Miranda and Yacine Kessaci
- Abstract要約: このモデルは,対話管理に必要なタスク – 状態追跡と意思決定 – に対処する。
このモデルは、非リカレントベースラインよりも高い性能、学習速度、堅牢性を達成する。
- 参考スコア(独自算出の注目度): 2.1485350418225244
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a recurrent hybrid model and training procedure for
task-oriented dialogue systems based on Deep Recurrent Q-Networks (DRQN). The
model copes with both tasks required for Dialogue Management: State Tracking
and Decision Making. It is based on modeling Human-Machine interaction into a
latent representation embedding an interaction context to guide the discussion.
The model achieves greater performance, learning speed and robustness than a
non-recurrent baseline. Moreover, results allow interpreting and validating the
policy evolution and the latent representations information-wise.
- Abstract(参考訳): 本稿では,Dep Recurrent Q-Networks (DRQN) に基づくタスク指向対話システムにおけるリカレントハイブリッドモデルとトレーニング手順を提案する。
このモデルは,対話管理に必要なタスク – 状態追跡と意思決定 – に対処する。
これは人間と機械の相互作用をモデル化し、対話コンテキストを埋め込んで議論を導く。
このモデルは、非リカレントベースラインよりも高い性能、学習速度、堅牢性を達成する。
さらに,方針の進化と潜在表現を情報的に解釈し,検証することができる。
関連論文リスト
- SAIE Framework: Support Alone Isn't Enough -- Advancing LLM Training
with Adversarial Remarks [47.609417223514605]
この研究は、学習者とパートナーモデルの間の支援的および敵対的な議論を促進するSAIEフレームワークを紹介している。
実験により,SAIEフレームワークで微調整したモデルでは,従来の微調整手法で訓練したモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-14T12:12:25Z) - Relational Temporal Graph Reasoning for Dual-task Dialogue Language
Understanding [39.76268402567324]
デュアルタスクダイアログ理解言語は、2つの相関ダイアログ言語理解タスクを、その固有の相関を通じて同時に扱うことを目的としている。
我々は、リレーショナル時間グラフ推論(Relational temporal graph reasoning)が中心となる新しいフレームワークを提唱した。
私たちのモデルは最先端のモデルよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2023-06-15T13:19:08Z) - Improving a sequence-to-sequence nlp model using a reinforcement
learning policy algorithm [0.0]
対話生成の現在のニューラルネットワークモデルは、おしゃべりエージェントの回答を生成する上で非常に有望である。
しかし、彼らは発話を1度ずつ予測し、将来の結果に対する彼らの影響を無視している。
本研究は,対話の長期的成功に基づくニューラルな会話モデル構築に向けた予備的なステップを記念するものである。
論文 参考訳(メタデータ) (2022-12-28T22:46:57Z) - Learning Interpretable Latent Dialogue Actions With Less Supervision [3.42658286826597]
本稿では,個別変数を用いたタスク指向対話のモデル化のための新しいアーキテクチャを提案する。
本モデルは,変化型リカレントニューラルネットワーク(VRNN)に基づいており,意味情報の明示的なアノテーションを必要としない。
論文 参考訳(メタデータ) (2022-09-22T16:14:06Z) - Dialogue Response Selection with Hierarchical Curriculum Learning [52.3318584971562]
対話応答選択のためのマッチングモデルの学習について検討する。
近年,ランダムなネガティブは信頼度の高いモデルを学習するには自明すぎることが判明し,階層的なカリキュラム学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-29T14:06:41Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
質問に対する応答のきめ細かい品質をモデル化するマルチレベルコントラスト学習パラダイムを提案する。
Rank-aware (RC) ネットワークはマルチレベルコントラスト最適化の目的を構築するために設計されている。
本研究では,知識推論(KI)コンポーネントを構築し,学習中の参照からキーワードの知識を抽出し,そのような情報を活用して情報的単語の生成を促す。
論文 参考訳(メタデータ) (2020-09-19T02:41:04Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Modelling Hierarchical Structure between Dialogue Policy and Natural
Language Generator with Option Framework for Task-oriented Dialogue System [49.39150449455407]
HDNOは、特定の対話行為表現の設計を避けるために潜在対話行為を設計するためのオプションフレームワークである。
RL,LaRL,HDSAで学習した単語レベルE2Eモデルと比較して,マルチドメイン対話のデータセットであるMultiWoz 2.0とMultiWoz 2.1でHDNOをテストする。
論文 参考訳(メタデータ) (2020-06-11T20:55:28Z) - Modeling Long Context for Task-Oriented Dialogue State Generation [51.044300192906995]
本稿では,シンプルで効果的な発話タグ付け手法と双方向言語モデルを用いたマルチタスク学習モデルを提案する。
提案手法は,入力対話コンテキストシーケンスが長い場合に,ベースラインの性能が著しく低下する,という問題を解決する。
本実験では,MultiWOZ 2.0データセットにおいて,ベースラインに対して7.03%の相対的改善を実現し,新しい最先端のジョイントゴール精度を52.04%に設定した。
論文 参考訳(メタデータ) (2020-04-29T11:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。