論文の概要: Dialogue Response Selection with Hierarchical Curriculum Learning
- arxiv url: http://arxiv.org/abs/2012.14756v1
- Date: Tue, 29 Dec 2020 14:06:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 02:03:56.201786
- Title: Dialogue Response Selection with Hierarchical Curriculum Learning
- Title(参考訳): 階層型カリキュラム学習による対話応答選択
- Authors: Yixuan Su, Deng Cai, Qingyu Zhou, Zibo Lin, Simon Baker, Yunbo Cao,
Shuming Shi, Nigel Collier, Yan Wang
- Abstract要約: 対話応答選択のためのマッチングモデルの学習について検討する。
近年,ランダムなネガティブは信頼度の高いモデルを学習するには自明すぎることが判明し,階層的なカリキュラム学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 52.3318584971562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the learning of a matching model for dialogue response selection.
Motivated by the recent finding that random negatives are often too trivial to
train a reliable model, we propose a hierarchical curriculum learning (HCL)
framework that consists of two complementary curricula: (1) corpus-level
curriculum (CC); and (2) instance-level curriculum (IC). In CC, the model
gradually increases its ability in finding the matching clues between the
dialogue context and response. On the other hand, IC progressively strengthens
the model's ability in identifying the mismatched information between the
dialogue context and response. Empirical studies on two benchmark datasets with
three state-of-the-art matching models demonstrate that the proposed HCL
significantly improves the model performance across various evaluation metrics.
- Abstract(参考訳): 対話応答選択のためのマッチングモデルの学習について検討する。
近年,ランダム陰性は信頼度の高いモデルの学習には自明すぎることが指摘され,(1)コーパスレベルのカリキュラム(CC)と(2)インスタンスレベルのカリキュラム(IC)という2つの補完的なカリキュラムからなる階層型カリキュラム学習(HCL)フレームワークを提案する。
ccでは、モデルによって、対話コンテキストと応答の間の一致した手がかりを見つける能力が徐々に増大する。
一方、icは対話の文脈と応答のミスマッチした情報を識別するモデルの能力を段階的に強化する。
3つの最先端マッチングモデルを持つ2つのベンチマークデータセットに関する実証研究は、提案したHCLが様々な評価指標でモデル性能を著しく改善することを示した。
関連論文リスト
- 'What are you referring to?' Evaluating the Ability of Multi-Modal
Dialogue Models to Process Clarificational Exchanges [65.03196674816772]
参照表現が宛先に対して意図された参照を一意に識別しない場合、参照の曖昧さが対話で生じる。
出席者は、通常、そのような曖昧さをすぐに検知し、メタコミュニケーション、明確化取引所(CE: Meta-communicative, Clarification Exchanges)を使用して、話者と作業する。
ここでは、CRを生成・応答する能力は、マルチモーダルな視覚的基盤を持つ対話モデルのアーキテクチャと目的関数に特定の制約を課していると論じる。
論文 参考訳(メタデータ) (2023-07-28T13:44:33Z) - Multi-Stage Coarse-to-Fine Contrastive Learning for Conversation Intent
Induction [34.25242109800481]
本稿では,第11回対話システム技術チャレンジ(DSTC11)におけるタスク指向対話における会話からのインテントインジェクションの追跡方法について述べる。
意図的クラスタリングの本質は、異なる対話発話の表現を区別することにある。
DSTC11の評価結果では,このトラックの2つのサブタスクのうちの1位が提案システムである。
論文 参考訳(メタデータ) (2023-03-09T04:51:27Z) - Learning Locality and Isotropy in Dialogue Modeling [28.743212772593335]
異方性と対話性のある特徴空間を構築するための単純な対話表現キャリブレーション法,すなわちSimDRCを提案する。
実験の結果,本手法は3つの対話課題における現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-29T06:48:53Z) - Hybrid Curriculum Learning for Emotion Recognition in Conversation [10.912215835115063]
本枠組みは,(1)会話レベルカリキュラム(CC)と(2)発話レベルカリキュラム(UC)の2つのカリキュラムから構成される。
提案したモデルに依存しないハイブリッドカリキュラム学習戦略により,既存のERCモデルに対する大幅な性能向上が観測された。
論文 参考訳(メタデータ) (2021-12-22T08:02:58Z) - DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings [33.89889949577356]
本稿では,対話型コントラスト学習手法であるDialogueCSEを提案する。
我々は,Microsoft Dialogue Corpus,Jing Dong Dialogue Corpus,E-Commerce Dialogue Corpusの3つの多ターン対話データセットについて評価を行った。
論文 参考訳(メタデータ) (2021-09-26T13:25:41Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
本稿では,タスク指向対話タスクにおいて,どのモデルが本質的に最も有意義な表現を担っているかを明らかにするために,事前学習された言語モデルについて検討する。
我々は、アノテートラベルを教師付き方法で固定された事前学習言語モデルの上に、分類器プローブとしてフィードフォワード層を微調整する。
論文 参考訳(メタデータ) (2020-10-26T21:34:39Z) - Knowledge-Grounded Dialogue Generation with Pre-trained Language Models [74.09352261943911]
我々は、事前学習された言語モデルを用いた知識基底対話生成について研究する。
本稿では,知識選択モジュールを用いた事前学習言語モデルによって定義された等価応答生成を提案する。
論文 参考訳(メタデータ) (2020-10-17T16:49:43Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
質問に対する応答のきめ細かい品質をモデル化するマルチレベルコントラスト学習パラダイムを提案する。
Rank-aware (RC) ネットワークはマルチレベルコントラスト最適化の目的を構築するために設計されている。
本研究では,知識推論(KI)コンポーネントを構築し,学習中の参照からキーワードの知識を抽出し,そのような情報を活用して情報的単語の生成を促す。
論文 参考訳(メタデータ) (2020-09-19T02:41:04Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。