論文の概要: Neural networks for classification of strokes in electrical impedance
tomography on a 3D head model
- arxiv url: http://arxiv.org/abs/2011.02852v2
- Date: Mon, 30 Aug 2021 12:30:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 13:00:09.591297
- Title: Neural networks for classification of strokes in electrical impedance
tomography on a 3D head model
- Title(参考訳): 3次元頭部モデルを用いた電気インピーダンストモグラフィーにおける脳卒中分類のためのニューラルネットワーク
- Authors: Valentina Candiani and Matteo Santacesaria
- Abstract要約: 我々は、出血性脳卒中と虚血性脳梗塞の分類のために、2つのニューラルネットワークアーキテクチャー、完全に接続されたアーキテクチャと畳み込みアーキテクチャーを使用します。
それらのネットワークは、合成電極測定の4万ドルのサンプルを持つデータセットで訓練されている。
次に、より複雑なストロークモデルを用いて、見えないEITデータのいくつかのデータセット上でネットワークをテストする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of the detection of brain hemorrhages from three
dimensional (3D) electrical impedance tomography (EIT) measurements. This is a
condition requiring urgent treatment for which EIT might provide a portable and
quick diagnosis. We employ two neural network architectures -- a fully
connected and a convolutional one -- for the classification of hemorrhagic and
ischemic strokes. The networks are trained on a dataset with $40\,000$ samples
of synthetic electrode measurements generated with the complete electrode model
on realistic heads with a 3-layer structure. We consider changes in head
anatomy and layers, electrode position, measurement noise and conductivity
values. We then test the networks on several datasets of unseen EIT data, with
more complex stroke modeling (different shapes and volumes), higher levels of
noise and different amounts of electrode misplacement. On most test datasets we
achieve $\geq 90\%$ average accuracy with fully connected neural networks,
while the convolutional ones display an average accuracy $\geq 80\%$. Despite
the use of simple neural network architectures, the results obtained are very
promising and motivate the applications of EIT-based classification methods on
real phantoms and ultimately on human patients.
- Abstract(参考訳): 3次元(3次元)電気インピーダンストモグラフィ(eit)による脳出血検出の問題点について検討した。
これは、EITがポータブルかつ迅速な診断を提供する緊急治療を必要とする状態である。
出血性脳卒中と脳梗塞の分類には,完全接続型と畳み込み型という2つのニューラルネットワークアーキテクチャを用いる。
ネットワークは、3層構造を持つリアルヘッド上で、完全な電極モデルで生成された合成電極測定のサンプルが40,000ドルのデータセットでトレーニングされる。
頭部解剖, 層, 電極位置, 測定ノイズ, 伝導度値の変化を検討した。
次に、より複雑なストロークモデリング(異なる形状と体積)、高レベルのノイズ、異なる量の電極のずれといった、見えないEITデータのデータセット上でネットワークをテストする。
ほとんどのテストデータセットでは、完全に接続されたニューラルネットワークで平均精度が$\geq 90\%であり、畳み込みは平均精度$\geq 80\%$である。
単純なニューラルネットワークアーキテクチャを使用しても、結果は非常に有望で、実際のファントムと最終的にヒト患者に対するeitベースの分類手法の適用を動機付けている。
関連論文リスト
- Neural decoding from stereotactic EEG: accounting for electrode variability across subjects [21.28778005847666]
本稿では,SEEGデータを用いて被験者間の振る舞いを復号化するためのトレーニングフレームワークである seegnificant を紹介する。
本研究では,行動課題を遂行する21人の被験者の複合データに基づいて学習した多目的モデルを構築した。
論文 参考訳(メタデータ) (2024-11-01T17:58:01Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEGはRobust Inter-Subject Electrode implantation Variability iEEGの略である。
iEEGデコーダモデルを開発し,各患者に電極の座標を必要とせずに複数の患者のデータに適用した。
分析の結果, RISE-iEEG は HTNet や EEGNet よりも F1 よりも10%高い値を示した。
論文 参考訳(メタデータ) (2024-08-12T18:33:19Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG [2.1915057426589746]
てんかん患者の治療と管理には, 精垂型鑑別が不可欠である。
本稿では,MP-SeizNetを用いた新しいマルチパス・アセプション型ディープラーニング・ネットワークを提案する。
MP-SeizNetは、畳み込みニューラルネットワーク(CNN)と、注意機構を備えた双方向長短期記憶ニューラルネットワーク(Bi-LSTM)で構成されている。
論文 参考訳(メタデータ) (2022-11-09T01:07:20Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
論文 参考訳(メタデータ) (2020-06-16T04:57:12Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Volumetric landmark detection with a multi-scale shift equivariant
neural network [16.114319747246334]
本稿では,3次元画像における高速かつメモリ効率の高いランドマーク検出を実現するマルチスケールのエンドツーエンドディープラーニング手法を提案する。
今回我々は,263個のCT上における頸動脈分岐検出法について検討し,平均ユークリッド距離2.81mmで最先端の精度を実現した。
論文 参考訳(メタデータ) (2020-03-03T17:06:19Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。