Statistical analysis of Wasserstein GANs with applications to time
series forecasting
- URL: http://arxiv.org/abs/2011.03074v1
- Date: Thu, 5 Nov 2020 19:45:59 GMT
- Title: Statistical analysis of Wasserstein GANs with applications to time
series forecasting
- Authors: Moritz Haas, Stefan Richter
- Abstract summary: We provide statistical theory for conditional and unconditional Wasserstein generative adversarial networks (WGANs)
We prove upper bounds for the excess Bayes risk of the WGAN estimators with respect to a modified Wasserstein-type distance.
We formalize and derive statements on the weak convergence of the estimators and use them to develop confidence intervals for new observations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide statistical theory for conditional and unconditional Wasserstein
generative adversarial networks (WGANs) in the framework of dependent
observations. We prove upper bounds for the excess Bayes risk of the WGAN
estimators with respect to a modified Wasserstein-type distance. Furthermore,
we formalize and derive statements on the weak convergence of the estimators
and use them to develop confidence intervals for new observations. The theory
is applied to the special case of high-dimensional time series forecasting. We
analyze the behavior of the estimators in simulations based on synthetic data
and investigate a real data example with temperature data. The dependency of
the data is quantified with absolutely regular beta-mixing coefficients.
Related papers
- Bounds in Wasserstein distance for locally stationary processes [2.180952057802427]
We address the estimation of the conditional probability distribution of locally stationary processes (LSPs) using Nadaraya-Watson type estimators.
Results are supported by numerical experiments on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-12-04T15:51:22Z) - Deep Learning Methods for the Noniterative Conditional Expectation G-Formula for Causal Inference from Complex Observational Data [3.0958655016140892]
The g-formula can be used to estimate causal effects of sustained treatment strategies using observational data.
Parametric models are subject to model misspecification, which may result in biased causal estimates.
We propose a unified deep learning framework for the NICE g-formula estimator.
arXiv Detail & Related papers (2024-10-28T21:00:46Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
We study the large-sample properties of a likelihood-based approach for estimating conditional deep generative models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator for estimating the conditional distribution.
arXiv Detail & Related papers (2024-10-02T20:46:21Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We demonstrate that in this setting, the generalized cross validation estimator (GCV) fails to correctly predict the out-of-sample risk.
We further extend our analysis to the case where the test point has nontrivial correlations with the training set, a setting often encountered in time series forecasting.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - Modeling High-Dimensional Data with Unknown Cut Points: A Fusion
Penalized Logistic Threshold Regression [2.520538806201793]
In traditional logistic regression models, the link function is often assumed to be linear and continuous in predictors.
We consider a threshold model that all continuous features are discretized into ordinal levels, which further determine the binary responses.
We find the lasso model is well suited in the problem of early detection and prediction for chronic disease like diabetes.
arXiv Detail & Related papers (2022-02-17T04:16:40Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Robust W-GAN-Based Estimation Under Wasserstein Contamination [8.87135311567798]
We study several estimation problems under a Wasserstein contamination model and present computationally tractable estimators motivated by generative networks (GANs)
Specifically, we analyze properties of Wasserstein GAN-based estimators for adversarial location estimation, covariance matrix estimation, and linear regression.
Our proposed estimators are minimax optimal in many scenarios.
arXiv Detail & Related papers (2021-01-20T05:15:16Z) - On Disentangled Representations Learned From Correlated Data [59.41587388303554]
We bridge the gap to real-world scenarios by analyzing the behavior of the most prominent disentanglement approaches on correlated data.
We show that systematically induced correlations in the dataset are being learned and reflected in the latent representations.
We also demonstrate how to resolve these latent correlations, either using weak supervision during training or by post-hoc correcting a pre-trained model with a small number of labels.
arXiv Detail & Related papers (2020-06-14T12:47:34Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.