Bounds in Wasserstein distance for locally stationary processes
- URL: http://arxiv.org/abs/2412.03414v1
- Date: Wed, 04 Dec 2024 15:51:22 GMT
- Title: Bounds in Wasserstein distance for locally stationary processes
- Authors: Jan Nino G. Tinio, Mokhtar Z. Alaya, Salim Bouzebda,
- Abstract summary: We address the estimation of the conditional probability distribution of locally stationary processes (LSPs) using Nadaraya-Watson type estimators.
Results are supported by numerical experiments on both synthetic and real-world datasets.
- Score: 2.180952057802427
- License:
- Abstract: Locally stationary processes (LSPs) provide a robust framework for modeling time-varying phenomena, allowing for smooth variations in statistical properties such as mean and variance over time. In this paper, we address the estimation of the conditional probability distribution of LSPs using Nadaraya-Watson (NW) type estimators. The NW estimator approximates the conditional distribution of a target variable given covariates through kernel smoothing techniques. We establish the convergence rate of the NW conditional probability estimator for LSPs in the univariate setting under the Wasserstein distance and extend this analysis to the multivariate case using the sliced Wasserstein distance. Theoretical results are supported by numerical experiments on both synthetic and real-world datasets, demonstrating the practical usefulness of the proposed estimators.
Related papers
- Constrained Sampling with Primal-Dual Langevin Monte Carlo [15.634831573546041]
This work considers the problem of sampling from a probability distribution known up to a normalization constant.
It satisfies a set of statistical constraints specified by the expected values of general nonlinear functions.
We put forward a discrete-time primal-dual Langevin Monte Carlo algorithm (PD-LMC) that simultaneously constrains the target distribution and samples from it.
arXiv Detail & Related papers (2024-11-01T13:26:13Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Sliced Wasserstein with Random-Path Projecting Directions [49.802024788196434]
We propose an optimization-free slicing distribution that provides a fast sampling for the Monte Carlo estimation of expectation.
We derive the random-path slicing distribution (RPSD) and two variants of sliced Wasserstein, i.e., the Random-Path Projection Sliced Wasserstein (RPSW) and the Importance Weighted Random-Path Projection Sliced Wasserstein (IWRPSW)
arXiv Detail & Related papers (2024-01-29T04:59:30Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Fast Approximation of the Sliced-Wasserstein Distance Using
Concentration of Random Projections [19.987683989865708]
The Sliced-Wasserstein distance (SW) is being increasingly used in machine learning applications.
We propose a new perspective to approximate SW by making use of the concentration of measure phenomenon.
Our method does not require sampling a number of random projections, and is therefore both accurate and easy to use compared to the usual Monte Carlo approximation.
arXiv Detail & Related papers (2021-06-29T13:56:19Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z) - Statistical analysis of Wasserstein GANs with applications to time
series forecasting [0.0]
We provide statistical theory for conditional and unconditional Wasserstein generative adversarial networks (WGANs)
We prove upper bounds for the excess Bayes risk of the WGAN estimators with respect to a modified Wasserstein-type distance.
We formalize and derive statements on the weak convergence of the estimators and use them to develop confidence intervals for new observations.
arXiv Detail & Related papers (2020-11-05T19:45:59Z) - Conditional Density Estimation via Weighted Logistic Regressions [0.30458514384586394]
We propose a novel parametric conditional density estimation method by showing the connection between the general density and the likelihood function of inhomogeneous process models.
The maximum likelihood estimates can be obtained via weighted logistic regressions, and the computation can be significantly relaxed by combining a block-wise alternating scheme and local case-control sampling.
arXiv Detail & Related papers (2020-10-21T11:08:25Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Faster Wasserstein Distance Estimation with the Sinkhorn Divergence [0.0]
The squared Wasserstein distance is a quantity to compare probability distributions in a non-parametric setting.
In this work, we propose instead to estimate it with the Sinkhorn divergence.
We show that, for smooth densities, this estimator has a comparable sample complexity but allows higher regularization levels.
arXiv Detail & Related papers (2020-06-15T06:58:16Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.