Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
- URL: http://arxiv.org/abs/2312.05388v2
- Date: Tue, 14 May 2024 15:34:48 GMT
- Title: Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
- Authors: Teddy Koker, Keegan Quigley, Eric Taw, Kevin Tibbetts, Lin Li,
- Abstract summary: ChargE3Net is an E(3)-equivariant graph neural network for predicting electron density in atomic systems.
We show that ChargE3Net exceeds the performance of prior work on diverse sets of molecules and materials.
- Score: 3.7655047338409893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The calculation of electron density distribution using density functional theory (DFT) in materials and molecules is central to the study of their quantum and macro-scale properties, yet accurate and efficient calculation remains a long-standing challenge. We introduce ChargE3Net, an E(3)-equivariant graph neural network for predicting electron density in atomic systems. ChargE3Net enables the learning of higher-order equivariant feature to achieve high predictive accuracy and model expressivity. We show that ChargE3Net exceeds the performance of prior work on diverse sets of molecules and materials. When trained on the massive dataset of over 100K materials in the Materials Project database, our model is able to capture the complexity and variability in the data, leading to a significant 26.7% reduction in self-consistent iterations when used to initialize DFT calculations on unseen materials. Furthermore, we show that non-self-consistent DFT calculations using our predicted charge densities yield near-DFT performance on electronic and thermodynamic property prediction at a fraction of the computational cost. Further analysis attributes the greater predictive accuracy to improved modeling of systems with high angular variations. These results illuminate a pathway towards a machine learning-accelerated ab initio calculations for materials discovery.
Related papers
- Electronic Structure Prediction of Multi-million Atom Systems Through Uncertainty Quantification Enabled Transfer Learning [5.4875371069660925]
Ground state electron density -- obtainable using Kohn-Sham Density Functional Theory (KS-DFT) simulations -- contains a wealth of material information.
However, the computational expense of KS-DFT scales cubically with system size which tends to stymie training data generation.
Here, we address this fundamental challenge by employing transfer learning to leverage the multi-scale nature of the training data.
arXiv Detail & Related papers (2023-08-24T21:41:29Z) - Accurate melting point prediction through autonomous physics-informed
learning [52.217497897835344]
We present an algorithm for computing melting points by autonomously learning from coexistence simulations in the NPT ensemble.
We demonstrate how incorporating physical models of the solid-liquid coexistence evolution enhances the algorithm's accuracy and enables optimal decision-making.
arXiv Detail & Related papers (2023-06-23T07:53:09Z) - Electronic-structure properties from atom-centered predictions of the
electron density [0.0]
electron density of a molecule or material has recently received major attention as a target quantity of machine-learning models.
We propose a gradient-based approach to minimize the loss function of the regression problem in an optimized and highly sparse feature space.
We show that starting from the predicted density a single Kohn-Sham diagonalization step can be performed to access total energy components that carry an error of just 0.1 meV/atom.
arXiv Detail & Related papers (2022-06-28T15:35:55Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
We describe a pre-training technique that utilizes large datasets of 3D molecular structures at equilibrium.
Inspired by recent advances in noise regularization, our pre-training objective is based on denoising.
arXiv Detail & Related papers (2022-05-31T22:28:34Z) - Prediction of the electron density of states for crystalline compounds
with Atomistic Line Graph Neural Networks (ALIGNN) [0.0]
We present an extension of the recently developed Atomistic Line Graph Neural Network (ALIGNN) to accurately predict DOS of a large set of material unit cell structures.
We evaluate two methods of representation of the target quantity - a direct discretized spectrum, and a compressed low-dimensional representation obtained using an autoencoder.
arXiv Detail & Related papers (2022-01-20T18:28:22Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction [0.0]
DeepDFT is a deep learning model for predicting the electronic charge density around atoms.
The accuracy and scalability of the model are demonstrated for molecules, solids and liquids.
arXiv Detail & Related papers (2020-11-04T16:56:08Z) - Predicting Elastic Properties of Materials from Electronic Charge
Density Using 3D Deep Convolutional Neural Networks [5.249388761037709]
We propose to use electronic charge density (ECD) as a generic unified 3D descriptor for materials property prediction.
We developed an ECD based 3D convolutional neural networks (CNNs) for predicting elastic properties of materials.
arXiv Detail & Related papers (2020-03-17T06:21:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.