論文の概要: Nonlinear Quantum Neuron: A Fundamental Building Block for Quantum
Neural Networks
- arxiv url: http://arxiv.org/abs/2011.03429v1
- Date: Fri, 6 Nov 2020 15:25:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 03:14:46.469558
- Title: Nonlinear Quantum Neuron: A Fundamental Building Block for Quantum
Neural Networks
- Title(参考訳): 非線形量子ニューロン:量子ニューラルネットワークの基本構築ブロック
- Authors: Shilu Yan, Hongsheng Qi, and Wei Cui
- Abstract要約: 量子コンピューティングにより、量子ニューラルネットワーク(QNN)は、人工ニューラルネットワーク(ANN)を超える大きな可能性を持つ。
QNNに関連する様々なモデルが開発されているが、ニューラルネットワークの非線形で散逸的なダイナミクスを線形でユニタリな量子システムにマージするという課題に直面している。
非線形関数を近似するために異なる量子回路を構築し、任意の非線形量子ニューロンを実現するための一般化可能なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.067768639196139
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing enables quantum neural networks (QNNs) to have great
potentials to surpass artificial neural networks (ANNs). The powerful
generalization of neural networks is attributed to nonlinear activation
functions. Although various models related to QNNs have been developed, they
are facing the challenge of merging the nonlinear, dissipative dynamics of
neural computing into the linear, unitary quantum system. In this paper, we
establish different quantum circuits to approximate nonlinear functions and
then propose a generalizable framework to realize any nonlinear quantum neuron.
We present two quantum neuron examples based on the proposed framework. The
quantum resources required to construct a single quantum neuron are the
polynomial, in function of the input size. Finally, both IBM Quantum Experience
results and numerical simulations illustrate the effectiveness of the proposed
framework.
- Abstract(参考訳): 量子コンピューティングにより、量子ニューラルネットワーク(QNN)は、人工ニューラルネットワーク(ANN)を超える大きな可能性を持つ。
ニューラルネットワークの強力な一般化は非線形活性化関数に起因する。
qnnに関連する様々なモデルが開発されているが、ニューラルネットワークの非線形、散逸的ダイナミクスを線形ユニタリ量子システムに統合するという課題に直面している。
本稿では,非線形関数を近似する異なる量子回路を構築し,非線形量子ニューロンを実現するための一般化可能なフレームワークを提案する。
提案手法に基づく量子ニューロンの2つの例を示す。
単一量子ニューロンを構成するために必要な量子資源は、入力サイズの関数の多項式である。
最後に、IBM Quantum Experienceの結果と数値シミュレーションの両方が提案フレームワークの有効性を示している。
関連論文リスト
- Information-driven Nonlinear Quantum Neuron [0.0]
本研究では,オープン量子システムとして動作するハードウェア効率の高い量子ニューラルネットワークを提案する。
入力量子情報のパラメトリゼーションが容易な繰り返し相互作用に基づくこの散逸モデルが、微分可能非線形活性化関数を示すことを示す。
論文 参考訳(メタデータ) (2023-07-18T07:12:08Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Parametrized constant-depth quantum neuron [56.51261027148046]
本稿では,カーネルマシンをベースとした量子ニューロン構築フレームワークを提案する。
ここでは、指数的に大きい空間にテンソル積特徴写像を適用するニューロンについて述べる。
パラメトリゼーションにより、提案されたニューロンは、既存のニューロンが適合できない基礎となるパターンを最適に適合させることができることが判明した。
論文 参考訳(メタデータ) (2022-02-25T04:57:41Z) - Quantum activation functions for quantum neural networks [0.0]
情報を符号化する状態を測定することなく、必要な精度で解析関数を近似する方法を示す。
この結果は,ゲートモデル量子コンピュータのアーキテクチャにおける人工ニューラルネットワークの科学を再放送するものである。
論文 参考訳(メタデータ) (2022-01-10T23:55:49Z) - Quantum reservoir computing using arrays of Rydberg atoms [1.2652031472297414]
我々は、脳内の神経回路のよく知られたモデルであるリカレントニューラルネットワーク(RNN)の量子バージョンを紹介する。
我々の量子RNN(qRNN)は、相互作用するスピン-1/2粒子のアンサンブルの自然ハミルトン力学を計算の手段として利用する。
我々は、qRNNがマルチタスク、意思決定、長期記憶などの認知的タスクの学習を複製できることを実際に示している。
論文 参考訳(メタデータ) (2021-11-22T02:45:18Z) - Exploration of Quantum Neural Architecture by Mixing Quantum Neuron
Designs [23.747282946165097]
本稿では、量子ニューロン設計を混合して量子ニューラルアーキテクチャを構築するための最初の試みを行う。
既存の量子ニューロンの設計は、変動量子回路(VQC)や量子フロー(QuantumFlow)のニューロンなど、かなり異なるが相補的なものである。
我々はこれらを混ぜ合わせて,コストのかかる測定を伴わずにシームレスに接続する方法を提案する。
論文 参考訳(メタデータ) (2021-09-08T17:47:54Z) - On quantum neural networks [91.3755431537592]
量子ニューラルネットワークの概念は、その最も一般的な関数の観点から定義されるべきである。
我々の推論は、量子力学におけるファインマン経路積分定式化の利用に基づいている。
論文 参考訳(メタデータ) (2021-04-12T18:30:30Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。