Open system dynamics from thermodynamic compatibility
- URL: http://arxiv.org/abs/2011.03504v2
- Date: Mon, 14 Dec 2020 16:08:53 GMT
- Title: Open system dynamics from thermodynamic compatibility
- Authors: Roie Dann and Ronnie Kosloff
- Abstract summary: In particular, strict energy conservation between the system and environment implies that the dissipative dynamical map commutes with the unitary system propagator.
We use spectral analysis to prove the general form of the ensuing master equation.
The obtained formal structure can be employed to test the compatibility of approximate derivations with thermodynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thermodynamics entails a set of mathematical conditions on quantum Markovian
dynamics. In particular, strict energy conservation between the system and
environment implies that the dissipative dynamical map commutes with the
unitary system propagator. Employing spectral analysis we prove the general
form of the ensuing master equation. We compare this result to master equations
obtained from standard microscopic derivations. The obtained formal structure
can be employed to test the compatibility of approximate derivations with
thermodynamics. For example, it designates that global master equations are the
compatible choice. The axiomatic approach sheds light on the validity of the
secular approximation in microscopic derivations, the form of the steady state
in heat transport phenomena, and indicates the lack of exceptional points in
the dynamics of open quantum systems.
Related papers
- Quantum Thermodynamic Integrability for Canonical and non-Canonical Statistics [0.0]
We extend the Carath'eodory principle of the Second Law to quantum thermodynamics with energy levels depending on macroscopic variables.
This extension introduces the concept of Quantum Thermodynamic Integrability (QTI), offering an alternative foundation for statistical mechanics.
arXiv Detail & Related papers (2024-07-11T09:50:39Z) - Non-Markovianity through entropy-based quantum thermodynamics [0.0]
We propose a measure of non-Markovianity based on the heat flow for single-qubit quantum evolutions.
This measure can be applied for unital dynamical maps that do not invert the sign of the internal energy.
arXiv Detail & Related papers (2022-10-07T18:09:32Z) - Thermodynamic Unification of Optimal Transport: Thermodynamic
Uncertainty Relation, Minimum Dissipation, and Thermodynamic Speed Limits [0.0]
We show that the Wasserstein distance equals the minimum product of irreversible entropy production and dynamical state mobility over all admissible Markovian dynamics.
These formulas not only unify the relationship between thermodynamics and the optimal transport theory for discrete and continuous cases but also generalize it to the quantum case.
arXiv Detail & Related papers (2022-06-06T15:37:59Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z) - Hyperbolic ring based formulation for thermo field dynamics, quantum
dissipation, entanglement, and holography [0.0]
The classical and quantum formulations for open systems related to dissipative dynamics are constructed on a complex hyperbolic ring.
The hyperbolic rotations are revealed as an underlying internal symmetry for the dissipative dynamics.
Entanglement entropy operators for the subsystem of interest and the environment are constructed as a tool for study the entanglement generated from the dissipation.
arXiv Detail & Related papers (2020-06-08T17:47:17Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.