Quantum Thermodynamic Integrability for Canonical and non-Canonical Statistics
- URL: http://arxiv.org/abs/2407.08344v3
- Date: Wed, 7 Aug 2024 18:08:57 GMT
- Title: Quantum Thermodynamic Integrability for Canonical and non-Canonical Statistics
- Authors: Ruo-Xun Zhai, C. P. Sun,
- Abstract summary: We extend the Carath'eodory principle of the Second Law to quantum thermodynamics with energy levels depending on macroscopic variables.
This extension introduces the concept of Quantum Thermodynamic Integrability (QTI), offering an alternative foundation for statistical mechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abstract We extend the Carath\'{e}odory principle of the Second Law to quantum thermodynamics with energy levels depending on macroscopic variables, such as volume and magnetic field. This extension introduces the concept of Quantum Thermodynamic Integrability (QTI), offering an alternative foundation for statistical mechanics. QTI is characterized by the path-independence of work and heat within the thermodynamic manifold, which is locally described by energy levels and specific thermodynamic parameters. Within this framework, temperature naturally emerges as an integrating factor, allowing for the derivation of both canonical and non-canonical states from the Entropy Integrable Equations (EIE) based on QTI. Notably, non-canonical states, which become particularly significant outside the thermodynamic limit, reveal the existence of informational correlations in finite-size thermodynamic systems.
Related papers
- Force-current structure in Markovian open quantum systems and its applications: geometric housekeeping-excess decomposition and thermodynamic trade-off relations [0.0]
We show that the entropy production rate is given by the product of the force and current operators.
The framework constitutes a comprehensive analogy with the nonequilibrium thermodynamics of discrete classical systems.
arXiv Detail & Related papers (2024-10-30T01:10:58Z) - Statistical Virtual Temperature of Classical and Quantum Systems [3.6400809555225115]
We introduce a foundational definition of statistical virtual temperature, derived from the spectrum of the Gibbs Kubo-Martin-Schwinger (KMS) state.
We demonstrate that the universal physical bounds between von Neumann entropy and statistical virtual temperature are constrained by these IPs.
arXiv Detail & Related papers (2024-10-02T07:14:37Z) - Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Thermodynamics-Consistent Graph Neural Networks [50.0791489606211]
We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures.
The GE-GNN architecture ensures thermodynamic consistency by predicting the molar excess Gibbs free energy.
We demonstrate high accuracy and thermodynamic consistency of the activity coefficient predictions.
arXiv Detail & Related papers (2024-07-08T06:58:56Z) - Non-Markovianity through entropy-based quantum thermodynamics [0.0]
We propose a measure of non-Markovianity based on the heat flow for single-qubit quantum evolutions.
This measure can be applied for unital dynamical maps that do not invert the sign of the internal energy.
arXiv Detail & Related papers (2022-10-07T18:09:32Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Strong Coupling Quantum Thermodynamics with Renormalized Hamiltonian and
Temperature [2.542198147027801]
We develop strong coupling quantum thermodynamics based on the solution of the exact master equation.
We find that both the Hamiltonian and the temperature must be renormalized due to the system-reservoir couplings.
With the renormalized Hamiltonian and temperature, the exact steady state of open quantum systems can be expressed as a standard Gibbs state.
arXiv Detail & Related papers (2020-10-05T07:34:26Z) - Quantum correlation entropy [0.0]
We study quantum coarse-grained entropy and demonstrate that the gap in entropy between local and global coarse-grainings is a natural generalization of entanglement entropy to mixed states and multipartite systems.
This "quantum correlation entropy" $Srm QC$ is additive over independent systems, measures total nonclassical correlations, and reduces to the entanglement entropy for bipartite pure states.
arXiv Detail & Related papers (2020-05-11T20:13:43Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.