Contrastive Topographic Models: Energy-based density models applied to
the understanding of sensory coding and cortical topography
- URL: http://arxiv.org/abs/2011.03535v1
- Date: Thu, 5 Nov 2020 16:36:43 GMT
- Title: Contrastive Topographic Models: Energy-based density models applied to
the understanding of sensory coding and cortical topography
- Authors: Simon Osindero
- Abstract summary: We address the problem of building theoretical models that help elucidate the function of the visual brain at computational/algorithmic and structural/mechanistic levels.
- Score: 9.555150216958246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of building theoretical models that help elucidate the
function of the visual brain at computational/algorithmic and
structural/mechanistic levels. We seek to understand how the receptive fields
and topographic maps found in visual cortical areas relate to underlying
computational desiderata. We view the development of sensory systems from the
popular perspective of probability density estimation; this is motivated by the
notion that an effective internal representational scheme is likely to reflect
the statistical structure of the environment in which an organism lives. We
apply biologically based constraints on elements of the model.
The thesis begins by surveying the relevant literature from the fields of
neurobiology, theoretical neuroscience, and machine learning. After this review
we present our main theoretical and algorithmic developments: we propose a
class of probabilistic models, which we refer to as "energy-based models", and
show equivalences between this framework and various other types of
probabilistic model such as Markov random fields and factor graphs; we also
develop and discuss approximate algorithms for performing maximum likelihood
learning and inference in our energy based models. The rest of the thesis is
then concerned with exploring specific instantiations of such models. By
performing constrained optimisation of model parameters to maximise the
likelihood of appropriate, naturalistic datasets we are able to qualitatively
reproduce many of the receptive field and map properties found in vivo, whilst
simultaneously learning about statistical regularities in the data.
Related papers
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
We aim to develop flexible identification conditions for multimodal data.
We establish identifiability guarantees for each latent component, extending the subspace identification results from prior work.
Our key theoretical ingredient is the structural sparsity of the causal connections among distinct modalities.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
We explore high-dimensional problems related to physiological monitoring using latent variable models.
First, we present a novel deep state-space model to generate electrical waveforms of the heart using optically obtained signals as inputs.
Second, we present a brain signal modeling scheme that combines the strengths of probabilistic graphical models and deep adversarial learning.
Third, we propose a framework for the joint modeling of physiological measures and behavior.
arXiv Detail & Related papers (2024-05-29T17:07:33Z) - Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants [4.532043501030714]
Probabilistic graphical models that encode an underlying Markov random field are fundamental building blocks of generative modeling.
This paper is to demonstrate that full likelihood based analysis of these models is feasible in a computationally efficient manner.
arXiv Detail & Related papers (2024-04-27T02:58:22Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Geometric and Topological Inference for Deep Representations of Complex
Networks [13.173307471333619]
We present a class of statistics that emphasize the topology as well as the geometry of representations.
We evaluate these statistics in terms of the sensitivity and specificity that they afford when used for model selection.
These new methods enable brain and computer scientists to visualize the dynamic representational transformations learned by brains and models.
arXiv Detail & Related papers (2022-03-10T17:14:14Z) - Convolutional Motif Kernel Networks [1.104960878651584]
We show that our model is able to robustly learn on small datasets and reaches state-of-the-art performance on relevant healthcare prediction tasks.
Our proposed method can be utilized on DNA and protein sequences.
arXiv Detail & Related papers (2021-11-03T15:06:09Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.