論文の概要: Learning Neural Event Functions for Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2011.03902v4
- Date: Wed, 27 Oct 2021 17:16:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 08:10:41.206985
- Title: Learning Neural Event Functions for Ordinary Differential Equations
- Title(参考訳): 常微分方程式に対する神経事象関数の学習
- Authors: Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel
- Abstract要約: ニューラルイベント関数を暗黙的に定義した終端基準に拡張する。
離散制御に応用した点過程のシミュレーションに基づくトレーニングを提案する。
- 参考スコア(独自算出の注目度): 31.474420819149724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existing Neural ODE formulation relies on an explicit knowledge of the
termination time. We extend Neural ODEs to implicitly defined termination
criteria modeled by neural event functions, which can be chained together and
differentiated through. Neural Event ODEs are capable of modeling discrete and
instantaneous changes in a continuous-time system, without prior knowledge of
when these changes should occur or how many such changes should exist. We test
our approach in modeling hybrid discrete- and continuous- systems such as
switching dynamical systems and collision in multi-body systems, and we propose
simulation-based training of point processes with applications in discrete
control.
- Abstract(参考訳): 既存のNeural ODEの定式化は終端時間の明示的な知識に依存している。
我々はNeural ODEをニューラルネットワークのイベント関数によってモデル化された暗黙的に定義された終端基準に拡張する。
ニューラルイベントODEは、これらの変更がいつ発生すべきか、あるいはそのような変更がいくつ存在するべきかを事前に知ることなく、連続的なシステムの離散的かつ瞬間的な変更をモデル化することができる。
本稿では,マルチボディシステムにおける動的システムの切り換えや衝突などのハイブリッド離散系と連続系をモデル化する上でのアプローチを検証し,離散制御に応用した点過程のシミュレーションに基づくトレーニングを提案する。
関連論文リスト
- Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections [6.345523830122166]
本稿では,長期記憶を強制し,基礎となる力学系の大域的表現を保存する定式化であるPolyODEを提案する。
提案手法は理論的保証に支えられ,過去と将来のデータの再構築において,過去の成果よりも優れていたことを実証する。
論文 参考訳(メタデータ) (2023-03-03T10:49:09Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Neural Hybrid Automata: Learning Dynamics with Multiple Modes and
Stochastic Transitions [36.81150424798492]
我々は,モード数やモード間遷移のダイナミクスについて事前知識のないSHSダイナミクスを学習するためのレシピであるNeural Hybrid Automata (NHAs)を紹介した。
NHAは、正規化フロー、ニューラル微分方程式、自己超越に基づく体系的推論手法を提供する。
遷移を伴うシステムにおけるモードリカバリやフローラーニング,階層型ロボットコントローラのエンドツーエンド学習など,さまざまなタスクにおけるNHAについて紹介する。
論文 参考訳(メタデータ) (2021-06-08T08:04:39Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Bayesian Neural Ordinary Differential Equations [0.9422623204346027]
Neural ODEs と Bayesian 推論フレームワークの統合が成功したことを実証します。
10,000枚の画像のテストアンサンブルで、後部のサンプル精度を98.5%達成します。
これにより、不確実性の確率的推定のための科学的機械学習ツールが提供される。
論文 参考訳(メタデータ) (2020-12-14T04:05:26Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
トレーニング中のODEの終了時刻をランダムにサンプリングする新しい正規化手法を提案する。
提案された正規化は実装が簡単で、オーバーヘッドを無視でき、様々なタスクで有効である。
本稿では,フローの正規化,時系列モデル,画像認識などの実験を通じて,提案した正規化がトレーニング時間を大幅に短縮し,ベースラインモデルよりも性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-06-18T17:44:50Z) - Learning Continuous-Time Dynamics by Stochastic Differential Networks [32.63114111531396]
変動微分ネットワーク(VSDN)という,フレキシブルな連続時間リカレントニューラルネットワークを提案する。
VSDNは神経微分方程式(SDE)による散発時間系列の複雑なダイナミクスを埋め込む
VSDNは最先端の継続的ディープラーニングモデルより優れており、散発時系列の予測やタスクにおいて優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-06-11T01:40:34Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。